Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
2.
BMC Genomics ; 25(1): 756, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095710

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are RNA transcripts of more than 200 nucleotides that do not encode canonical proteins. Their biological structure is similar to messenger RNAs (mRNAs). To distinguish between lncRNA and mRNA transcripts quickly and accurately, we upgraded the PLEK alignment-free tool to its next version, PLEKv2, and constructed models tailored for both animals and plants. RESULTS: PLEKv2 can achieve 98.7% prediction accuracy for human datasets. Compared with classical tools and deep learning-based models, this is 8.1%, 3.7%, 16.6%, 1.4%, 4.9%, and 48.9% higher than CPC2, CNCI, Wen et al.'s CNN, LncADeep, PLEK, and NcResNet, respectively. The accuracy of PLEKv2 was > 90% for cross-species prediction. PLEKv2 is more effective and robust than CPC2, CNCI, LncADeep, PLEK, and NcResNet for primate datasets (including chimpanzees, macaques, and gorillas). Moreover, PLEKv2 is not only suitable for non-human primates that are closely related to humans, but can also predict the coding ability of RNA sequences in plants such as Arabidopsis. CONCLUSIONS: The experimental results illustrate that the model constructed by PLEKv2 can distinguish lncRNAs and mRNAs better than PLEK. The PLEKv2 software is freely available at https://sourceforge.net/projects/plek2/ .


Subject(s)
RNA, Long Noncoding , RNA, Messenger , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Humans , Animals , Software , Computational Biology/methods
3.
Neural Netw ; 179: 106577, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39098265

ABSTRACT

The enormous data and computational resources required by Convolutional Neural Networks (CNNs) hinder the practical application on mobile devices. To solve this restrictive problem, filter pruning has become one of the practical approaches. At present, most existing pruning methods are currently developed and practiced with respect to the spatial domain, which ignores the potential interconnections in the model structure and the decentralized distribution of image energy in the spatial domain. The image frequency domain transform method can remove the correlation between image pixels and concentrate the image energy distribution, which results in lossy compression of images. In this study, we find that the frequency domain transform method is also applicable to the feature maps of CNNs. The filter pruning via wavelet transform (WT) is proposed in this paper (FPWT), which combines the frequency domain information of WT with the output feature map to more obviously find the correlation between feature maps and make the energy into a relatively concentrated distribution in the frequency domain. Moreover, the importance score of each feature map is calculated by the cosine similarity and the energy-weighted coefficients of the high and low frequency components, and prune the filter based on its importance score. Experiments on two image classification datasets validate the effectiveness of FPWT. For ResNet-110 on CIFAR-10, FPWT reduces FLOPs and parameters by more than 60.0 % with 0.53 % accuracy improvement. For ResNet-50 on ImageNet, FPWT reduces FLOPs by 53.8 % and removes parameters by 49.7 % with only 0.97 % loss of Top-1 accuracy.

4.
Mol Cell Biochem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963615

ABSTRACT

Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.

5.
Front Cell Infect Microbiol ; 14: 1402329, 2024.
Article in English | MEDLINE | ID: mdl-38947125

ABSTRACT

Introduction: In infants with cholestasis, variations in the enterohepatic circulation of bile acids and the gut microbiota (GM) characteristics differ between those with biliary atresia (BA) and non-BA, prompting a differential analysis of their respective GM profiles. Methods: Using 16S rDNA gene sequencing to analyse the variance in GM composition among three groups: infants with BA (BA group, n=26), non-BA cholestasis (IC group, n=37), and healthy infants (control group, n=50). Additionally, correlation analysis was conducted between GM and liver function-related indicators. Results: Principal component analysis using Bray-Curtis distance measurement revealed a significant distinction between microbial samples in the IC group compared to the two other groups. IC-accumulated co-abundance groups exhibited positive correlations with aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, and total bile acid serum levels. These correlations were notably reinforced upon the exclusion of microbial samples from children with BA. Conclusion: The varying "enterohepatic circulation" status of bile acids in children with BA and non-BA cholestasis contributes to distinct GM structures and functions. This divergence underscores the potential for targeted GM interventions tailored to the specific aetiologies of cholestasis.


Subject(s)
Bile Acids and Salts , Biliary Atresia , Cholestasis , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Biliary Atresia/microbiology , Cholestasis/microbiology , Infant , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Male , Female , RNA, Ribosomal, 16S/genetics , Bilirubin/blood , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Ribosomal/genetics , Feces/microbiology
6.
Cell Biol Toxicol ; 40(1): 52, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967699

ABSTRACT

Diabetic osteoporosis (DO) presents significant clinical challenges. This study aimed to investigate the potential of magnetic nanoparticle-enhanced extracellular vesicles (GMNPE-EVs) derived from bone marrow mesenchymal stem cells (BMSCs) to deliver miR-15b-5p, thereby targeting and downregulating glial fibrillary acidic protein (GFAP) expression in rat DO models. Data was sourced from DO-related RNA-seq datasets combined with GEO and GeneCards databases. Rat primary BMSCs, bone marrow-derived macrophages (BMMs), and osteoclasts were isolated and cultured. EVs were separated, and GMNPE targeting EVs were synthesized. Bioinformatic analysis revealed a high GFAP expression in DO-related RNA-seq and GSE26168 datasets for disease models. Experimental results confirmed elevated GFAP in rat DO bone tissues, promoting osteoclast differentiation. miR-15b-5p was identified as a GFAP inhibitor, but was significantly downregulated in DO and enriched in BMSC-derived EVs. In vitro experiments showed that GMNPE-EVs could transfer miR-15b-5p to osteoclasts, downregulating GFAP and inhibiting osteoclast differentiation. In vivo tests confirmed the therapeutic potential of this approach in alleviating rat DO. Collectively, GMNPE-EVs can effectively deliver miR-15b-5p to osteoclasts, downregulating GFAP expression, and hence, offering a therapeutic strategy for rat DO.


Subject(s)
Extracellular Vesicles , Glial Fibrillary Acidic Protein , Mesenchymal Stem Cells , MicroRNAs , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Osteoporosis/metabolism , Osteoporosis/genetics , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Rats , Osteoclasts/metabolism , Male , Cell Differentiation , Magnetite Nanoparticles , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Complications/metabolism , Diabetes Complications/genetics
7.
Int Heart J ; 65(4): 758-769, 2024.
Article in English | MEDLINE | ID: mdl-39085115

ABSTRACT

Abdominal aortic aneurysm (AAA) is characterized by permanent luminal expansion and a high mortality rate due to aortic rupture. Despite the identification of abnormalities in the mevalonate pathway (MVA) in many diseases, including cardiovascular diseases, the potential impact of this pathway on AAA remains unclear. This study aims to investigate whether the expression of the MVA-related enzyme is altered during the progression of angiotensin II (Ang II) -induced AAA.Ang II 28D and Ang II 5D groups were continuously perfused with Ang II for 28 days and 5 days, respectively, and the Sham group was perfused with saline. The general and remodeling characteristics of AAA were determined by biochemical and histological analysis. Alteration of MVA-related enzyme expressions was revealed by western blot and single-cell RNA sequencing (scRNA-seq).The continuous Ang II infusion for 28 days showed significant aorta expansion and arterial remodeling. Although the arterial diameter slightly increased, the aneurysm formation was not found in Ang II induction for 5 days. MVA-related enzyme expression and activation of small GTP-binding proteins were significantly increased after Ang II-induced. As verified by scRNA-seq, the key enzyme gene expression was also higher in Ang II 28D. Similarly, it was detected that the expression levels of the above enzymes and the activity of small G proteins were elevated in the early stage of AAA as induced by Ang II infusion for 5 days.Continuous Ang II infusion-induced abdominal aortic expansion and arterial remodeling were accompanied by altered expression of key enzymes in the MVA.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Mevalonic Acid , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Mevalonic Acid/metabolism , Animals , Male , Vascular Remodeling , Disease Models, Animal , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology
8.
Hortic Res ; 11(7): uhae129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966865

ABSTRACT

Long non-coding RNAs (lncRNAs) have gathered significant attention due to their pivotal role in plant growth, development, and biotic and abiotic stress resistance. Despite this, there is still little understanding regarding the functions of lncRNA in these domains in the tea plant (Camellia sinensis), mainly attributable to the insufficiencies in gene manipulation techniques for tea plants. In this study, we designed a novel strategy to identify evolutionarily conserved trans-lncRNA (ECT-lncRNA) pairs in plants. We used highly consistent base sequences in the exon-overlapping region between trans-lncRNAs and their target gene transcripts. Based on this method, we successfully screened 24 ECT-lncRNA pairs from at least two or more plant species. In tea, as observed in model plants such as Arabidopsis, alfalfa, potatoes, and rice, there exists a trans-lncRNA capable of forming an ECT-lncRNA pair with transcripts of the 12-oxophytodienoate reductase (OPR) family, denoted as the OPRL/OPR pair. Considering evolutionary perspectives, the OPRL gene cluster in each species likely originates from a replication event of the OPR gene cluster. Gene manipulation and gene expression analysis revealed that CsOPRL influences disease resistance by regulating CsOPR expression in tea plants. Furthermore, the knockout of StOPRL1 in Solanum tuberosum led to aberrant growth characteristics and strong resistance to fungal infection. This study provides insights into a strategy for the screening and functional verification of ECT-lncRNA pairs.

9.
Hortic Res ; 11(7): uhae136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994448

ABSTRACT

Flavonoids constitute the main nutraceuticals in the leaves of tea plants (Camellia sinensis). To date, although it is known that drought stress can negatively impact the biosynthesis of flavonoids in tea leaves, the mechanism behind this phenomenon is unclear. Herein, we report a protein phosphorylation mechanism that negatively regulates the biosynthesis of flavonoids in tea leaves in drought conditions. Transcriptional analysis revealed the downregulation of gene expression of flavonoid biosynthesis and the upregulation of CsMPK4a encoding a mitogen-activated protein kinase in leaves. Luciferase complementation and yeast two-hybrid assays disclosed that CsMPK4a interacted with CsWD40. Phosphorylation assay in vitro, specific protein immunity, and analysis of protein mass spectrometry indicated that Ser-216, Thr-221, and Ser-253 of CsWD40 were potential phosphorylation sites of CsMPK4a. Besides, the protein immunity analysis uncovered an increased phosphorylation level of CsWD40 in tea leaves under drought conditions. Mutation of the three phosphorylation sites generated dephosphorylated CsWD403A and phosphorylated CsWD403D variants, which were introduced into the Arabidopsis ttg1 mutant. Metabolic analysis showed that the anthocyanin and proanthocyanidin content was lower in ttg1:CsWD403D transgenic plants than ttg1::CsWD403A transgenic and wild type plants. The transient overexpression of CsWD403D downregulated the anthocyanidin biosynthesis in tea leaves. The dual-fluorescein protein complementation experiment showed that CsWD403D did not interact with CsMYB5a and CsAN2, two key transcription factors of procyanidins and anthocyanidins biosynthesis in tea plant. These findings indicate that the phosphorylation of CsWD40 by CsMPK4a downregulates the flavonoid biosynthesis in tea plants in drought stresses.

10.
Int J Biol Macromol ; 277(Pt 2): 133632, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971279

ABSTRACT

In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Šand 2.0 Šin Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.

11.
J Phys Chem A ; 128(28): 5659-5667, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38953788

ABSTRACT

Tetrahalogen-1,4-benzoquinone (THBQ) represents a category of H2O2-dependent substrates for chemiluminescence (CL), including tetrafluoro-, tetrachloro-, tetrabromo-, and tetraiodo-1,4-benzoquinone (TFBQ, TCBQ, TBBQ, and TIBQ). A deep understanding of the CL mechanism of THBQ is essential for all H2O2-dependent CL and even some bioluminescence. This article systematically investigates the CL process of THBQ by density functional theory and multireference state theory. The theoretical results confirm the generality of the CL mechanism previously proposed in studies on TCBQ and TBBQ. The dissociation steps producing the emitter of light from dihalogenquinone dioxetane (DHD) and its anion (DHD-), formed by the oxidation of THBQ, were carefully considered. Findings show that the dissociation of DHD/DHD- follows the entropy trap/gradually reversible charge-transfer-induced luminescence (GRCTIL) mechanisms. The dissociation of DHD- is kinetically more advantageous compared with that of DHD. At the practical experimental pH value, the decrease in the electron-withdrawing inductive effect from F to I substituents results in the decrease in the proportions of easily dissociated DHD-, and the increase in the heavy-atom effect from F to I substituents leads to the increase in the phosphorescence emission. These combined factors successively decrease the CL intensity from TFBQ to TCBQ, TBBQ, and TIBQ. The conclusions are verified by the previous experiments on TCBQ and TBBQ, and they are expected to be confirmed by future experiments on TFBQ and TIBQ.

12.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026698

ABSTRACT

Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.

13.
Plant J ; 119(3): 1299-1312, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838090

ABSTRACT

Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase-like acyltransferases (SCPL-ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL-AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.


Subject(s)
Acyltransferases , Camellia , Carboxypeptidases , Hydrolyzable Tannins , Plant Proteins , Camellia/genetics , Camellia/enzymology , Camellia/metabolism , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Hydrolyzable Tannins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/enzymology , Tandem Mass Spectrometry
14.
J Transl Med ; 22(1): 545, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849871

ABSTRACT

Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.


Subject(s)
Bacteria , Digestive System Neoplasms , Humans , Digestive System Neoplasms/microbiology , Digestive System Neoplasms/therapy , Bacteria/metabolism , Gastrointestinal Microbiome , Animals
15.
Appl Environ Microbiol ; 90(7): e0025524, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38874338

ABSTRACT

Marine bacteria contribute substantially to cycle macroalgae polysaccharides in marine environments. Carrageenans are the primary cell wall polysaccharides of red macroalgae. The carrageenan catabolism mechanism and pathways are still largely unclear. Pseudoalteromonas is a representative bacterial genus that can utilize carrageenan. We previously isolated the strain Pseudoalteromonas haloplanktis LL1 that could grow on ι-carrageenan but produce no ι-carrageenase. Here, through a combination of bioinformatic, biochemical, and genetic analyses, we determined that P. haloplanktis LL1 processed a desulfurization-depolymerization sequential pathway for ι-carrageenan utilization, which was initiated by key sulfatases PhSulf1 and PhSulf2. PhSulf2 acted as an endo/exo-G4S (4-O-sulfation-ß-D-galactopyranose) sulfatase, while PhSulf1 was identified as a novel endo-DA2S sulfatase that could function extracellularly. Because of the unique activity of PhSulf1 toward ι-carrageenan rather than oligosaccharides, P. haloplanktis LL1 was considered to have a distinct ι-carrageenan catabolic pathway compared to other known ι-carrageenan-degrading bacteria, which mainly employ multifunctional G4S sulfatases and exo-DA2S (2-O-sulfation-3,6-anhydro-α-D-galactopyranose) sulfatase for sulfate removal. Furthermore, we detected widespread occurrence of PhSulf1-encoding gene homologs in the global ocean, indicating the prevalence of such endo-acting DA2S sulfatases as well as the related ι-carrageenan catabolism pathway. This research provides valuable insights into the enzymatic processes involved in carrageenan catabolism within marine ecological systems.IMPORTANCECarrageenan is a type of linear sulfated polysaccharide that plays a significant role in forming cell walls of marine algae and is found extensively distributed throughout the world's oceans. To the best of our current knowledge, the ι-carrageenan catabolism in marine bacteria either follows the depolymerization-desulfurization sequential process initiated by ι-carrageenase or starts from the desulfurization step catalyzed by exo-acting sulfatases. In this study, we found that the marine bacterium Pseudoalteromonas haloplanktis LL1 processes a distinct pathway for ι-carrageenan catabolism employing a specific endo-acting DA2S-sulfatase PhSulf1 and a multifunctional G4S sulfatase PhSulf2. The unique PhSulf1 homologs appear to be widely present on a global scale, indicating the indispensable contribution of the marine bacteria containing the distinct ι-carrageenan catabolism pathway. Therefore, this study would significantly enrich our understanding of the molecular mechanisms underlying carrageenan utilization, providing valuable insights into the intricate roles of marine bacteria in polysaccharide cycling in marine environments.


Subject(s)
Bacterial Proteins , Carrageenan , Pseudoalteromonas , Sulfatases , Carrageenan/metabolism , Pseudoalteromonas/enzymology , Pseudoalteromonas/genetics , Pseudoalteromonas/metabolism , Sulfatases/metabolism , Sulfatases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Seawater/microbiology
16.
Sci Rep ; 14(1): 10506, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714746

ABSTRACT

The lining structures of tunnels are typically constructed using sprayed or cast concrete materials, and their performance and quality during tunnel excavation and blasting are crucial for the stability and safety of tunnels. Therefore, the safe distance between the lining structure and blasting source should be determined to avoid concrete damage caused by blasting vibrations. In this study, taking the subway tunnel of Danshan Station in Qingdao as an example, the JH-2 model is introduced as the constitutive model of the tunnel blasting simulation, and the JH-2 model parameters of the local surrounding rock are obtained by experiments, and finally the numerical simulation and theoretical verification are carried out to study the safety distance of shotcrete under various safety judgment standards. The results indicate that the JH-2 model can effectively simulate the propagation of stress waves under different media conditions, and the closer the strength parameters and pressure constant of the lining structure are to those of the surrounding rock, the safer the concrete-rock bonding interface. During tunnel blasting construction using the ring blasting method, the peak particle velocity (PPV) of the lining structure increases with an increase in the arch angle. Based on the numerical simulation results, we recommend that concrete lining be constructed at a distance of at least 62 m from the blasting source to avoid damage caused by vibrations. The effect of concrete tensile failure caused by longitudinal stress is much smaller than the damage to the bonding interface caused by the PPV and can be neglected.

17.
Bioact Mater ; 38: 455-471, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38770426

ABSTRACT

Osteosarcoma is the most common malignant bone tumor without efficient management for improving 5-year event-free survival. Immunotherapy is also limited due to its highly immunosuppressive tumor microenvironment (TME). Pore-forming gasdermins (GSDMs)-mediated pyroptosis has gained increasing concern in reshaping TME, however, the expressions and relationships of GSDMs with osteosarcoma remain unclear. Herein, gasdermin E (GSDME) expression is found to be positively correlated with the prognosis and immune infiltration of osteosarcoma patients, and low GSDME expression was observed. A vector termed as LPAD contains abundant hydroxyl groups for hydrating layer formation was then prepared to deliver the GSDME gene to upregulate protein expression in osteosarcoma for efficient TME reshaping via enhanced pyroptosis induction. Atomistic molecular dynamics simulations analysis proved that the hydroxyl groups increased LPAD hydration abilities by enhancing coulombic interaction. The upregulated GSDME expression together with cleaved caspase-3 provided impressive pyroptosis induction. The pyroptosis further initiated proinflammatory cytokines release, increased immune cell infiltration, activated adaptive immune responses and create a favorable immunogenic hot TME. The study not only confirms the role of GSDME in the immune infiltration and prognosis of osteosarcoma, but also provides a promising strategy for the inhibition of osteosarcoma by pore-forming GSDME gene delivery induced enhanced pyroptosis to reshape the TME of osteosarcoma.

18.
Int J Biol Macromol ; 270(Pt 2): 132465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768909

ABSTRACT

The enhanced utilization of biomass-derived chemicals for the generation of high value aromatics through an advanced catalytic strategy has captured considerable attention within the realm of eco-friendly manufacturing. This work presented four innovative three-dimensional rod-shaped mesoporous Ce-based MOF materials, which were coupled with a H-donor solvent to facilitate vanillin hydrodeoxygenation and macromolecular lignin. Under the optimized conditions (30 mg CoCe@C catalyst, 2 MPa N2 pressure, 15 mL isopropanol, 190 °C, and 5 h), the CoCe@C catalyst achieved nearly complete conversion of vanillin and demonstrated 87.8 % selectivity in the hydrogen-donor solvent. The characterization findings suggested that the synergy between metallic Co and oxygen vacancy sites enabled the effective activation of CHO group in vanillin, leading to formation of reactive product MMP. In addition, the optimal CoCe@C catalyst could also achieve macromolecular lignin hydrodeoxygenation to obtain high yield of lignin oil products with narrower molecular weight distribution. This study presented a viable approach for the concurrent utilization of lignin derivatives in the generation of high value fuels and chemicals.


Subject(s)
Lignin , Metal-Organic Frameworks , Oxygen , Phenols , Lignin/chemistry , Catalysis , Oxygen/chemistry , Metal-Organic Frameworks/chemistry , Phenols/chemistry , Cobalt/chemistry , Benzaldehydes/chemistry
19.
Environ Sci Technol ; 58(22): 9536-9547, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771144

ABSTRACT

Recent studies found the intrusion and retention of exogenous fine particles into joints, but epidemiological data for long- and intermediate-term exposure associations are scare. Here, all urban working, retired employee, and rural residents (16.78 million) in Beijing from January 1, 2011 to December 31, 2019 were included to investigate the effects of long- and intermediate-term ambient particulate exposure on development of osteoarthritis. We identified 1,742,067 participants as first-visit patients with osteoarthritis. For each interquartile range increase in annual PM2.5 (23.32 µg/m3) and PM10 (23.92 µg/m3) exposure concentration, the pooled hazard ratios were respectively 1.238 (95% CI: 1.228, 1.249) and 1.178 (95% CI: 1.168, 1.189) for first osteoarthritis outpatient visits. Moreover, age at first osteoarthritis outpatient visits significantly decreased by 4.52 (95% CI: 3.45 to 5.40) days per µg/m3 for annual PM2.5 exposure at below 67.85 µg/m3. Finally, among the six constituents analyzed, black carbon appears to be the most important component associated with the association between PM2.5 exposure and the three osteoarthritis-related outcomes.


Subject(s)
Osteoarthritis , Particulate Matter , Humans , Osteoarthritis/epidemiology , Prospective Studies , Air Pollution , Male , Air Pollutants , Female , Environmental Exposure , Middle Aged , Risk Factors , Beijing/epidemiology , Aged
20.
Obesity (Silver Spring) ; 32(7): 1339-1348, 2024 07.
Article in English | MEDLINE | ID: mdl-38783517

ABSTRACT

OBJECTIVE: We analyzed quantitative computed tomography (CT) and chemical shift-encoded magnetic resonance imaging (MRI) data from a Chinese cohort to investigate the effects of BMI and aging on different adipose tissue (AT) depots. METHODS: In 400 healthy, community-dwelling individuals aged 22 to 83 years, we used MRI to quantify proton density fat fraction (PDFF) of the lumbar spine (L2-L4) bone marrow AT (BMAT), the psoas major and erector spinae (ES) muscles, and the liver. Abdominal total AT, visceral AT (VAT), and subcutaneous AT (SAT) areas were measured at the L2-L3 level using quantitative CT. Partial correlation analysis was used to evaluate the relationship of each AT variable with age and BMI. Multiple linear regression analysis was performed in which each AT variable was evaluated in turn as a function of age and the other five independent AT measurements. RESULTS: Of the 168 men, 29% had normal BMI (<24.0 kg/m2), 47% had overweight (24.0-27.9 kg/m2), and 24% had obesity (≥ 28.0 kg/m2). In the 232 women, the percentages were 46%, 32%, and 22%, respectively. Strong or very strong correlations with BMI were found for total AT, VAT, and SAT in both sexes. BMAT and ES PDFF was strongly correlated with age in women and moderately correlated in men. In both sexes, BMAT PDFF correlated only with age and not with any of the other AT depots. Psoas PDFF correlated only with ES PDFF and not with age or the other AT depots. Liver PDFF correlated with BMI and VAT and weakly with SAT in men. VAT and SAT correlated with age and each other in both sexes. CONCLUSIONS: Age and BMI are both associated with adiposity, but their effects differ depending on the type of AT.


Subject(s)
Adiposity , Body Mass Index , Bone Marrow , Intra-Abdominal Fat , Liver , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Female , Adult , Aged , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Intra-Abdominal Fat/diagnostic imaging , Liver/diagnostic imaging , Aged, 80 and over , Bone Marrow/diagnostic imaging , Young Adult , Obesity/diagnostic imaging , Subcutaneous Fat/diagnostic imaging , Aging/physiology , Muscle, Skeletal/diagnostic imaging , Overweight/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , China , Age Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...