Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38786484

ABSTRACT

High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical jumping motion. The trajectory optimization process is decomposed into two sequential optimization parts: optimization computation of centroidal dynamics and coherent whole-body kinematics. Both optimization problems converge on the common variables (the center of mass, momentum, and foot position) using cost functions while allowing for some tolerance in the consistency of the foot position. Additionally, complementarity conditions and a pre-defined contact sequence are implemented to constrain the contact force and foot position during the launching and flight phases. The whole-body trajectory, including the launching and flight phases, can be efficiently solved by a single sequential optimization, which is an efficient solution for the vertical jumping motion. Finally, the whole-body trajectory generated by the proposed optimized method is demonstrated on a real humanoid robot platform, and a vertical jumping motion of 0.5 m in height (foot lifting distance) is achieved.

2.
ISA Trans ; 141: 401-413, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37474435

ABSTRACT

The high stiffness actuator (HSA), applied to each joint of an electrical driven humanoid robot, can directly affect the motion performance of the torque-controlled humanoid robots. For high control performance of HSA, a high-precision dynamic torque control (HDTC) is proposed. The HDTC consists of two phases: (1) A novel dynamic current control is used to linearize high stiffness actuator torque control system, which can estimate and compensate the nonlinear coupling parts; (2) An enhanced internal model control is designed to ensure high tracking accuracy in the system containing noisy torque signal and even numerical differentiation signals. Benefitting from dynamic current control and the enhanced internal model control, the proposed HDTC is accurate and adaptable. Finally, the superiority of the HDTC is verified with comparative experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...