Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.509
Filter
1.
Neural Regen Res ; 20(2): 424-439, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819046

ABSTRACT

Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.

2.
Mol Ther ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38822524

ABSTRACT

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide-isomerase A3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein (CRP) level and disease activity score 28 (DAS28). Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor (TCR) signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing Th1 and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

3.
Psychiatry Res ; 338: 115977, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38823165

ABSTRACT

BACKGROUND: The specific effects of adverse childhood experiences (ACEs) in adulthood and senectitude were less known. We aim to examine the relationship between early ACEs and overall health condition as well as specific dimensions in the middle-aged and elderly population. METHODS: In the 2019-2021 Behavioral Risk Factor Surveillance System Study, robust Poisson regression models were used to estimate the relationship between ACE exposure and current health status among adults aged 45 ≥ years. RESULTS: Of the 195,472 participants, 53.8 % were female and the mean age was 65.0 years. Compared to populations without ACE, ACE exposures were more significantly associated with depression (PR: 2.03, 95 %CI: 1.94-2.21), frequent mental health (PR: 1.85, 95 %CI: 1.74-1.97) and subject cognitive decline (PR: 1.99, 95 %CI:1.85-2.14) than with physical health (PR: 1.37, 95 %CI: 1.32-1.44), with dose-response patterns. The association with mental disorder was especially significant among the elderly population. CONCLUSION: Early ACEs are associated with adverse health outcomes that persist into later life, particularly mental disorders and cognitive decline. Poor mental health may indirectly influence associations with ACEs and cognitive decline as well as physical health. Our findings emphasize the importance of lifelong psychological screening and support for the ACE-exposed middle-aged and elderly population.

4.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
5.
Comput Biol Med ; 177: 108637, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38824789

ABSTRACT

Radiotherapy is a preferred treatment for brain metastases, which kills cancer cells via high doses of radiation meanwhile hardly avoiding damage to surrounding healthy cells. Therefore, the delineation of organs-at-risk (OARs) is vital in treatment planning to minimize radiation-induced toxicity. However, the following aspects make OAR delineation a challenging task: extremely imbalanced organ sizes, ambiguous boundaries, and complex anatomical structures. To alleviate these challenges, we imitate how specialized clinicians delineate OARs and present a novel cascaded multi-OAR segmentation framework, called OAR-SegNet. OAR-SegNet comprises two distinct levels of segmentation networks: an Anatomical-Prior-Guided network (APG-Net) and a Point-Cloud-Guided network (PCG-Net). Specifically, APG-Net handles segmentation for all organs, where multi-view segmentation modules and a deep prior loss are designed under the guidance of prior knowledge. After APG-Net, PCG-Net refines small organs through the mini-segmentation and the point-cloud alignment heads. The mini-segmentation head is further equipped with the deep prior feature. Extensive experiments were conducted to demonstrate the superior performance of the proposed method compared to other state-of-the-art medical segmentation methods.

6.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826368

ABSTRACT

H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple non-human mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine strains. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.

7.
Angew Chem Int Ed Engl ; : e202403473, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829678

ABSTRACT

Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystaline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly-linked benzoxazine ring. The validity of their crystal structures has been directly visualized through the state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystaline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94% enantiomeric excess.

8.
Future Sci OA ; 10(1): FSO901, 2024.
Article in English | MEDLINE | ID: mdl-38827805

ABSTRACT

Aim: To examine both predictive and clinicopathological importance underlying FOXD1 in malignant tumors, our study adopts meta-analysis. Methods: We searched from PubMed, Embase, WOS, Wanfang and CNKI. Stata SE15.1 was used to calculate the risk ratio (HR) as well as relative risk (RR) with 95% of overall CIs to assess FOXD1 and overall survival rate (OS), disease-free survival rate as well as clinicopathological parameters. Results: 3808 individuals throughout 17 trials showed high FOXD1 expression was linked to disadvantaged OS (p < 0.001) and disease-free survival (p < 0.001) and higher TNM stage (p < 0.001). Conclusion: Elevated FOXD1 had worse predictions and clinicopathological parameters in most cancers. The GEPIA database findings also support our results.


FOXD1 is a gene linked to a variety of cancers. In our article, we analyzed the results of several clinical trials in patients with different cancers. We found that when this gene is expressed in large amounts, it is often indicative of poor survival rates. From this study we can use FOXD1 to predict the course of the disease and at the same time study its upper and lower pathways to find therapeutic drugs to treat the cancer.

9.
EFORT Open Rev ; 9(6): 467-478, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828967

ABSTRACT

Purpose: This study sought to determine if the use of tranexamic acid (TXA) in preexisting thromboembolic risk patients undergoing total joint arthroplasty (TJA) was linked to an increased risk of death or postoperative complications. Methods: We conducted a comprehensive search for studies up to May 2023 in PubMed, Web of Science, EMBASE, and the Cochrane Library. We included randomized clinical trials, cohort studies, and case-control studies examining the use of TXA during TJA surgeries on high-risk patients. The Cochrane Risk of Bias instrument was used to gauge the excellence of RCTs, while the MINORS index was implemented to evaluate cohort studies. We used mean difference (MD) and relative risk (RR) as effect size indices for continuous and binary data, respectively, along with 95% CIs. Results: Our comprehensive study, incorporating data from 11 diverse studies involving 812 993 patients, conducted a meta-analysis demonstrating significant positive outcomes associated with TXA administration. The findings revealed substantial reductions in critical parameters, including overall blood loss (MD = -237.33; 95% CI (-425.44, -49.23)), transfusion rates (RR = 0.45; 95% CI (0.34, 0.60)), and 90-day unplanned readmission rates (RR = 0.86; 95% CI (0.76, 0.97)). Moreover, TXA administration exhibited a protective effect against adverse events, showing decreased risks of pulmonary embolism (RR = 0.73; 95% CI (0.61, 0.87)), myocardial infarction (RR = 0.47; 95% CI (0.40-0.56)), and stroke (RR = 0.73; 95% CI (0.59-0.90)). Importantly, no increased risk was observed for mortality (RR = 0.53; 95% CI (0.24, 1.13)), deep vein thrombosis (RR = 0.69; 95% CI (0.44, 1.09)), or any of the evaluated complications associated with TXA use. Conclusion: The results of this study indicate that the use of TXA in TJA patients with preexisting thromboembolic risk does not exacerbate complications, including reducing mortality, deep vein thrombosis, and pulmonary embolism. Existing evidence strongly supports the potential benefits of TXA in TJA patients with thromboembolic risk, including lowering blood loss, transfusion, and readmission rates.

10.
ACS Omega ; 9(21): 22952-22969, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826526

ABSTRACT

Although abundant unconventional oil resources have been discovered in conglomerate and sandstone reservoirs in rift basins, the mechanism of differential pore evolution in conglomerates and sandstone reservoirs within different secondary structural zones of rift basins is not yet clear. The pore structures of conglomerate and sandstone reservoirs in the distinct secondary structural zones in the Chezhen Sag were quantified in three dimensions using high-resolution microcomputed tomography (micro-CT). Thin section and scanning electron microscopy observations were used to investigate the differential evolution mechanisms of conglomerate and sandstone reservoirs. Micro-CT analysis of the pore structures of conglomerate and sandstone reservoirs revealed that sandstone reservoirs are superior to conglomerate reservoirs with regard to the pore number and pore connectivity and that sandstone reservoirs are more heterogeneous than conglomerate reservoirs. Triangles dominate the pore and pore throat geometries of sandstone and conglomerate reservoirs, while the sandstone reservoir pores are more regular than conglomerate reservoir pores. The depositional environment, mineral composition, and diagenetic intensity jointly control the quality of the reservoirs. Because of the lengthy transportation distance of their parent rocks, the compositional maturity and sorting behavior of sandstone reservoirs in depression and gentle slope zones are better than those of conglomerate reservoirs in steep slope zones, and thus sandstone reservoirs have a higher initial porosity than conglomerate reservoirs. The rapid compaction experienced by the conglomerate reservoirs in steep slope zones in their early stages creates a closed diagenetic environment, making it difficult to effectively improve reservoir porosity through dissolution. However, the widely developed microfractures in the reservoirs provide channels for fluid migration, promote the development of dissolution pores, and form a tight reservoir dominated by secondary pores. With weak compaction and an open diagenetic environment, the primary pores in sandstone reservoirs in the gentle slope zone are preserved in large quantities. Meanwhile, dissolution expands the secondary pores of the reservoir, resulting in a high-quality reservoir having both primary and secondary pores. In addition, an approach based on primary, secondary, and total porosity was proposed in the study to efficiently evaluate reservoir quality and identify reservoir evolution mechanisms.

11.
PeerJ ; 12: e17278, 2024.
Article in English | MEDLINE | ID: mdl-38827282

ABSTRACT

In this article, the history and taxonomy of Placoneis gastrum, the type species of the genus Placoneis, was discussed. We investigated the structure of pore occlusions in Placoneis and related genera. As a result, we propose a new classification for tectulum-like types of pore occlusions. The new classification is congruent with previously-published and newly-constructed phylogenies based on molecular data. Based on the different structures of the pore occlusions, species of Placoneis are transferred to Witkowskia gen. nov. Hence, 168 new combinations are introduced. A new diatom species, with a similar morphology to Placoneis flabellata, was discovered in Bac Kan Province, Vietnam. It is described in this article as Chudaevia densistriata sp. nov. Placoneis flabellata is transferred to Chudaevia gen. nov. We also illustrate Placoneis flabellata herein and compare it to Chudaevia densistriata sp. nov. An unknown diatom, similar to Placoneis coloradensis, was discovered in Chukotka, Russia. It is introduced as Placoneis elinae sp. nov. below. Additionally, we discuss the distribution of some species of Witkowskia gen. nov. and Chudaevia gen. nov.


Subject(s)
Diatoms , Phylogeny , Diatoms/classification , Vietnam , Russia , Species Specificity
12.
PeerJ ; 12: e17325, 2024.
Article in English | MEDLINE | ID: mdl-38832044

ABSTRACT

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Subject(s)
Flavonoids , Flowers , Rhododendron , Rhododendron/metabolism , Rhododendron/genetics , Rhododendron/growth & development , Flowers/metabolism , Flowers/growth & development , Flowers/genetics , Flavonoids/metabolism , Flavonoids/analysis
13.
J Acoust Soc Am ; 155(6): 3606-3614, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38833282

ABSTRACT

Surface and underwater (S/U) acoustic targets recognition is an important application of passive sonar. It is difficult to distinguish them due to the mixture of underwater target radiation noise and marine environmental noise. In previous studies, although using a single hydrophone was able to identify S/U acoustic targets, there were still a few hydrophones that had poor accuracy. In this paper, S/U acoustic targets recognition using two hydrophones based on Gradient Boosting Decision Tree is proposed, and it is first found out as high as 100% accuracy could be achieved with the implementation of SACLANT 1993 data. The real experimental data are always rare and insufficient. The big training dataset is generated using environmental information by acoustic model named KRAKEN. Simulation and experimental data used in the model are heterogeneous, and the differences between these two kinds of data are assimilated by using vertical linear array feature extraction method. The model realizes the recognition of S/U acoustic targets based on channel information besides source spectrum information. By using the combination of two hydrophones, the surface and underwater targets recognition accuracy reached 1 and 0.9384, while they are only 0.4715 and 0.5620 using a single hydrophone, respectively.

14.
World J Gastroenterol ; 30(16): 2233-2248, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690027

ABSTRACT

BACKGROUND: Perineural invasion (PNI) has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer (RC). Preoperative prediction of PNI status is helpful for individualized treatment of RC. Recently, several radiomics studies have been used to predict the PNI status in RC, demonstrating a good predictive effect, but the results lacked generalizability. The preoperative prediction of PNI status is still challenging and needs further study. AIM: To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients. METHODS: This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers. The patients underwent pre-operative high-resolution magnetic resonance imaging (MRI) between May 2019 and August 2022. Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging (T2WI) and contrast-enhanced T1WI (T1CE) sequences. The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared (T2WI, T1CE and T2WI + T1CE fusion sequences). A clinical-radiomics (CR) model was established by combining the radiomics features and clinical risk factors. The internal and external validation groups were used to validate the proposed models. The area under the receiver operating characteristic curve (AUC), DeLong test, net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS: Among the radiomics models, the T2WI + T1CE fusion sequences model showed the best predictive performance, in the training and internal validation groups, the AUCs of the fusion sequence model were 0.839 [95% confidence interval (CI): 0.757-0.921] and 0.787 (95%CI: 0.650-0.923), which were higher than those of the T2WI and T1CE sequence models. The CR model constructed by combining clinical risk factors had the best predictive performance. In the training and internal and external validation groups, the AUCs of the CR model were 0.889 (95%CI: 0.824-0.954), 0.889 (95%CI: 0.803-0.976) and 0.894 (95%CI: 0.814-0.974). Delong test, NRI, and IDI showed that the CR model had significant differences from other models (P < 0.05). Calibration curves demonstrated good agreement, and DCA revealed significant benefits of the CR model. CONCLUSION: The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively, which facilitates individualized treatment of RC patients.


Subject(s)
Magnetic Resonance Imaging , Neoplasm Invasiveness , Rectal Neoplasms , Humans , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Rectal Neoplasms/surgery , Magnetic Resonance Imaging/methods , Male , Retrospective Studies , Female , Middle Aged , Aged , Predictive Value of Tests , Prognosis , Preoperative Period , Peripheral Nerves/diagnostic imaging , Peripheral Nerves/pathology , Adult , Risk Factors , Rectum/diagnostic imaging , Rectum/pathology , Rectum/surgery , ROC Curve , Radiomics
15.
PhytoKeys ; 241: 131-141, 2024.
Article in English | MEDLINE | ID: mdl-38690579

ABSTRACT

This study provides detailed description of a newly-discovered Callicarpayongshunensis Wen B. Xu, Xiao D. Li & Yan Ling Liu (Lamiaceae) species from Hunan, China. The species shares similarities in the inflorescence, glandular colour and leaf shape features with C.luteopunctata H. T. Chang and C.giraldii Hesse ex Rehd., while its white fruits are similar to those of C.longifolia Lamk. However, its procumbent, evergreen shrub and white fruits are distinctly different from those of C.luteopunctata and C.giraldii, while its procumbent, scarless nodes and stellate pubescence free fruits distinguishes it from C.longifolia. Images, distribution, morphological features, molecular phylogenetic classification and conservation assessment of this new Callicarpa species are explored.

16.
Ann Hematol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691144

ABSTRACT

Refractory/relapsed idiopathic multicentric Castleman disease (R/R iMCD) has limited treatment options. With studies showing increased mTOR activation in iMCD patients, sirolimus becomes an attractive and promising therapy for R/R iMCD. Here we report the results of a retrospective study involving 26 R/R iMCD patients treated with sirolimus-containing regimen. The median age at sirolimus initiation was 40.5 years (23-60), with a median prior treatment line of 2 (1-5). 18 patients (69.2%) achieved symptomatic and biochemical response, with a median time to at least overall partial remission of 1.9 months (0.5-14.6). The median follow-up time from sirolimus initiation was 11.7 months (1.6-50.7) and the median time to next treatment (TTNT) was 46.2 months. No patients died at the end of follow-up. Most of the patients in the cohort are in ongoing responses and continue sirolimus therapy. Sirolimus is well tolerated with minor adverse effects. In conclusion, sirolimus is effective for R/R iMCD patients with good tolerance.

17.
Nat Prod Res ; : 1-12, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693725

ABSTRACT

The genus Liparis, a group of perennial ornamental herbs in the family Orchidaceae, is widely distributed in tropical and subtropical regions. Many species of the genus Liparis have been commonly used as traditional herbal medicines for the treatment of menorrhagia, haemoptysis, traumatic bleeding, snake bites, and pneumonia. This review describes the ornamental value of plants of the genus Liparis and summarises the chemical constituents and pharmacological activities reported during the last decade. The main chemical constituents of this genus are phenolic acids, alkaloids, flavonoids, etc. Most phenolic acids and alkaloids have a nervogenic acid skeleton, and most alkaloids also have a pyrrolizidine skeleton. Extracts from the genus Liparis plants showed significant haemostatic, antitumor, anti-inflammatory, hypolipidemic, antioxidant, and antibacterial activities. This paper proposed ideas and research directions for the future study of plants in the genus Liparis, providing valuable information for the development of new drugs and promoting their utilisation.

18.
Front Bioeng Biotechnol ; 12: 1374352, 2024.
Article in English | MEDLINE | ID: mdl-38694621

ABSTRACT

Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.

19.
J Tissue Viability ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38697891

ABSTRACT

BACKGROUND: Patients with cancer are susceptible to pressure injuries, which accelerate deterioration and death. In patients with post-acute cancer, the risk of pressure injury is ignored in home or community settings. OBJECTIVE: To develop and validate a community-acquired pressure injury risk prediction model for cancer patients. METHODS: All research data were extracted from the hospital's electronic medical record system. The identification of optimal predictors is based on least absolute shrinkage and selection operator regression analysis combined with clinical judgment. The performance of the model was evaluated by drawing a receiver operating characteristic curve and calculating the area under the curve (AUC), calibration analysis and decision curve analysis. The model was used for internal and external validation, and was presented as a nomogram. RESULTS: In total, 6257 participants were recruited for this study. Age, malnutrition, chronic respiratory failure, body mass index, and activities of daily living scores were identified as the final predictors. The AUC of the model in the training and validation set was 0.87 (95 % confidence interval [CI], 0.85-0.89), 0.88 (95 % CI, 0.85-0.91), respectively. The model demonstrated acceptable calibration and clinical benefits. CONCLUSIONS: Comorbidities in patients with cancer are closely related to the etiology of pressure injury, and can be used to predict the risk of pressure injury. IMPLICATIONS FOR PRACTICE: This study provides a tool to predict the risk of pressure injury for cancer patients. This suggests that improving the respiratory function and nutritional status of cancer patients may reduce the risk of community-acquired pressure injury.

20.
Cell Biosci ; 14(1): 56, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698431

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is strongly associated with hospitalization and mortality in patients with sepsis. Recent evidence suggests that pyroptosis mediated by NLRP3(NOD-, LRR- and pyrin domain-containing 3) inflammasome activation plays a key role in sepsis. However, the mechanism of NLRP3 inflammasome activation in sepsis-induced lung injury remains unclear. RESULTS: in this study, we demonstrated that NLRP3 inflammasome was activated by the down-regulation of heat shock protein family A member 8 (HSPA8) in Lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-treated mouse alveolar epithelial cells (AECs). Geranylgeranylacetone (GGA)-induced HSPA8 overexpression in cecum ligation and puncture (CLP) mice could significantly reduce systemic inflammatory response and mortality, effectively protect lung function, whilst HSPA8 inhibitor VER155008 aggravated this effect. The inhibition of HSPA8 was involved in sepsis induced acute lung injury by promoting pyroptosis of AECs. The down-regulation of HSPA8 activated NLRP3 inflammasome to mediate pyroptosis by promoting the degradation of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). In addition, when stimulated by LPS and ATP, down-regulated SKP2 promoted pyroptosis of AECs by further attenuating ubiquitination of NLRP3. Adeno-associated virus 9-SKP2(AAV9-SKP2) could promote NLRP3 ubiquitination and degradation, alleviate lung injury and inhibit systemic inflammatory response in vivo. CONCLUSION: in summary, our study shows there is strong statistical evidence that the suppression of HSPA8 mediates alveolar epithelial pyroptosis by promoting the degradation of E3 ubiquitin ligase SKP2 and subsequently attenuating the ubiquitination of NLRP3 to activate the NLRP3 inflammasome, which provides a new perspective and therapeutic target for the treatment of sepsis-induced lung injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...