Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 643
Filter
1.
Toxicology ; 506: 153858, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825033

ABSTRACT

This study aims to investigate the impact of T-2 toxin on the regulation of downstream target genes and signaling pathways through exosome-released miRNA in the development of cartilage damage in Kashin-Beck disease (KBD). Serum samples from KBD patients and supernatant from C28/I2 cells treated with T-2 toxin were collected for the purpose of comparing the differential expression of exosomal miRNA using absolute quantitative miRNA-seq. Target genes of differential exosomal miRNAs were identified using Targetscan and Miranda databases, followed by GO and KEGG enrichment analyses. Validation of key indicators of chondrocyte injury in KBD was conducted using Real-time quantitative PCR (RT-qPCR) and Immunohistochemical staining (IHC). A total of 20 exosomal miRNAs related to KBD were identified in serum, and 13 in chondrocytes (C28/I2). The identified exosomal miRNAs targeted 48,459 and 60,612 genes, primarily enriched in cell organelles and membranes, cell differentiation, and cytoskeleton in the serum, and the cytoplasm and nucleus, metal ion binding in chondrocyte (C28/I2). The results of the KEGG enrichment analysis indicated that the Ras signaling pathway may play a crucial role in the pathogenesis of KBD. Specifically, the upregulation of hsa-miR-181a-5p and hsa-miR-21-3p, along with the downregulation of hsa-miR-152-3p and hsa-miR-186-5p, were observed. Additionally, T-2 toxin intervention led to a significant downregulation of RALA, REL, and MAPK10 expression. Furthermore, the protein levels of RALA, REL, and MAPK10 were notably decreased in the superficial and middle layers of cartilage tissues from KBD. The induction of differential expression of chondrocyte exosomal miRNAs by T-2 toxin results in the collective regulation of target genes RALA, REL, and MAPK10, ultimately mediating the Ras signaling pathway and causing a disruption in chondrocyte extracellular matrix metabolism, leading to chondrocyte injury.

2.
Fish Physiol Biochem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842792

ABSTRACT

The unsynchronized growth of the large yellow croaker (Larimichthys crocea), which impacts growth efficiency, poses a challenge for aquaculture practitioners. In our study, juvenile stocks of large yellow croaker were sorted by size after being cultured in offshore cages for 4 months. Subsequently, individuals from both the fast-growing (FG) and slow-growing (SG) groups were sampled for analysis. High-throughput RNA-Seq was employed to identify genes and pathways that are differentially expressed during varying growth rates, which could suggest potential physiological mechanisms that influence growth rate. Our transcriptome analysis identified 382 differentially expressed genes (DEGs), comprising 145 upregulated and 237 downregulated genes in comparison to the SG group. GO and KEGG enrichment analyses indicated that these DEGs are predominantly involved in signal transduction and biochemical metabolic pathways. Quantitative PCR (qPCR) results demonstrated that cat, fasn, idh1, pgd, fgf19, igf2, and fads2 exhibited higher expression levels, whereas gadd45b and gadd45g showed lower expression compared to the slow-growing group. In conclusion, the differential growth rates of large yellow croaker are intricately associated with cellular proliferation, metabolic rates of the organism, and immune regulation. These findings offer novel insights into the molecular mechanisms and regulatory aspects of growth in large yellow croaker and enhance our understanding of growth-related genes.

3.
BMC Med Imaging ; 24(1): 137, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844854

ABSTRACT

BACKGROUND: This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning models. MATERIALS AND METHODS: 135 CT images of Credence Cartridge Radiomic phantoms were collected and screened from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic features were screened according to the Lasso regression method. The radiomic features extracted from the rubber and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of the machine learning model. Radiomics features were divided into three groups based on the different scanner manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and area under the receiver curve (AUC) were used as evaluation metrics for model classification. RESULTS: The principal component and ANOVA analysis results show that the variability of different scanner manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning models for classification improved, with the Random Forest model showing the most significant enhancement. The AUC value increased from 0.88 to 0.92. CONCLUSIONS: The Combat algorithm has reduced variability in radiomic features from different scanners. In the phantom CT dataset, it appears that the machine learning model's classification performance may have improved after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat's impact on radiomic features in medical imaging.


Subject(s)
Machine Learning , Phantoms, Imaging , Humans , Tomography, X-Ray Computed , Tomography Scanners, X-Ray Computed , Principal Component Analysis , Neural Networks, Computer , Algorithms , Radiomics
4.
Cell Death Discov ; 10(1): 223, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719811

ABSTRACT

Mechanical overloading can promote cartilage senescence and osteoarthritis (OA) development, but its impact on synovial macrophages and the interaction between macrophages and chondrocytes remain unknown. Here, we found that macrophages exhibited M1 polarization under mechanical overloading and secreted ectosomes that induced cartilage degradation and senescence. By performing miRNA sequencing on ectosomes, we identified highly expressed miR-350-3p as a key factor mediating the homeostatic imbalance of chondrocytes caused by M1-polarized macrophages, this result being confirmed by altering the miR-350-3p level in chondrocytes with mimics and inhibitor. In experimental OA mice, miR-350-3p was increased in synovium and cartilage, while intra-articular injection of antagomir-350-3p inhibited the increase of miR-350-3p and alleviated cartilage degeneration and senescence. Further studies showed that macrophage-derived ectosomal miR-350-3p promoted OA progression by inhibiting nuclear receptor binding SET domain protein 1(NSD1) in chondrocytes and regulating histone H3 lysine 36(H3K36) methylation. This study demonstrated that the targeting of macrophage-derived ectosomal miRNAs was a potential therapeutic method for mechanical overload-induced OA.

5.
Medicine (Baltimore) ; 103(18): e37991, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701321

ABSTRACT

Several observational studies have found that exposure to sunlight reduces the risk of colorectal cancer (CRC). However, sun exposure remains ambiguous in its relationship to CRC. We carried out a Mendelian randomization (MR) study to explore the potential associations between them. We examined the exposure to sunlight summary statistics of the UK Biobank Consortium using a 2-sample MR analysis. Using data from the FinnGen consortium, we derived summary statistics for CRC. We conducted our analysis with various methods, incorporating inverse variance weighted (IVW) along with 4 other approaches. A Cochran Q statistic was used to measure the heterogeneity of instrumental variables (IVs). We screened 133 single nucleotide polymorphisms (SNPs) (time spent outdoors in summer), 41 SNPs (time spent outdoors in winter), and 35 SNPs (frequency of solarium/sunlamp use) representing sunlight exposure for MR analysis. All selected SNPs had an F-statistic >20, indicating that IVs did not weakly bias the results. The summer outdoor activity trait exhibited significant heterogeneity (Cochran Q statistic = 183.795, P = .002 < 0.05), but we found no horizontal polymorphisms or significant heterogeneity for the other exposure traits. According to IVW estimates, no causal association exists between time spent outdoors in summer and CRC (Odds Ratio, OR = 0.735, 95% confidence interval, CI = 0.494-1.017, P = .128 > 0.017). No causal relationship existed between time spent outdoors in winter and CRC, as indicated by Bonferroni-corrected adjusted p-values. The OR was 0.877 with a 95% CI of 0.334-2.299, and the P value was .789, more significant than the significance threshold of 0.017. The solarium/sunlamp use frequency was not associated with CRC (OR = 1.567, 95%CI = 0.243-10.119, P = .637 > .017). Also, an IVW with random effects was applied to determine the causal relationship between summer outdoor time and CRC. No causal association between summer outdoor time and CRC was found (OR = 0.735, 95% CI = 0.494-1.017, P = .128 > .017). Additionally, 4 additional analyses yielded similar results. The findings of our study suggest that exposure to sunlight may reduce CRC risk, but the causal relationship remains unsolved. There is no evidence to suggest that exposure to sunlight prevents CRC. Randomized, controlled trials are needed to determine whether sunlight exposure protects against CRC.


Subject(s)
Colorectal Neoplasms , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sunlight , Humans , Sunlight/adverse effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Seasons , Risk Factors
6.
Polymers (Basel) ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732765

ABSTRACT

The long-term operation of motors induces substantial alterations in the surface conductivity and nonlinear coefficient of anti-corona paint, diminishing its efficacy and jeopardizing the longevity of large motors. Hence, the development of high-performance anti-corona paint holds paramount importance in ensuring motor safety. In this study, we integrate two nano-fillers, namely silicon carbide (SiC) and organic montmorillonite (O-MMT), into a composite matrix comprising micron silicon carbide and epoxy resin (SiC/EP). Subsequently, three distinct types of anti-corona paint are formulated: SiC/EP, Nano-SiC/EP, and O-MMT/SiC/EP. Remarkably, O-MMT/SiC/EP exhibits a glass transition temperature about 25 °C higher than that of SiC/EP, underscoring its superior thermal properties. Moreover, the introduction of nano-fillers markedly augments the surface conductivity of the anti-corona paint. Aging tests, conducted across varying temperatures, unveil a notable reduction in the fluctuation range of surface conductivity post-aging. Initially, the nonlinear coefficients exhibit a declining trend, succeeded by an ascending trajectory. The O-MMT/SiC/EP composite displays a maximum nonlinearity coefficient of 1.465 and a minimum of 1.382. Furthermore, the incorporation of nanofillers amplifies the dielectric thermal stability of epoxy resin composites, with O-MMT/SiC/EP showcasing the pinnacle of thermal endurance. Overall, our findings elucidate the efficacy of nano-fillers in enhancing the performance and longevity of anti-corona paint, particularly highlighting the exceptional attributes of the O-MMT/SiC/EP composite in bolstering motor safety through improved thermal stability and electrical properties.

7.
Article in English | MEDLINE | ID: mdl-38749785

ABSTRACT

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.

8.
Cell Death Dis ; 15(5): 335, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744853

ABSTRACT

PTENα/ß, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/ß to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/ß associated cancers. These findings not only shed light on the important role of the PTENα/ß-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins , PTEN Phosphohydrolase , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/chemistry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Animals , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Cell Proliferation/genetics , Disease Progression , Protein Binding , Cell Line, Tumor , Mice, Nude , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/chemistry , Protein Domains , Amino Acid Motifs
9.
Arthritis Res Ther ; 26(1): 88, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632649

ABSTRACT

BACKGROUND: The association between osteoarthritis (OA) and hypertension is a subject of ongoing debate in observational research, and the underlying causal relationship between them remains elusive. METHODS: This study retrospectively included 24,871 participants in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. Weighted logistic regression was performed to investigate the connection between OA and hypertension. Additionally, Mendelian randomization (MR) analysis was conducted to explore the potential causal relationship between OA and hypertension. RESULTS: In the NHANES data, after adjusting for multiple confounding factors, there was no significant relationship between OA and hypertension (OR 1.30, 95% CI, 0.97-1.73, P = 0.089). However, among males, OA appeared to be associated with a higher risk of hypertension (OR 2.25, 95% CI, 1.17-4.32, P = 0.019). Furthermore, MR results indicate no relationship between multiple OA phenotypes and hypertension: knee OA (IVW, OR 1.024, 95% CI: 0.931-1.126, P = 0.626), hip OA (IVW, OR 0.990, 95% CI: 0.941-1.042, P = 0.704), knee or hip OA (IVW, OR 1.005, 95% CI: 0.915-1.105, P = 0.911), and OA from UK Biobank (IVW, OR 0.796, 95% CI: 0.233-2.714, P = 0.715). Importantly, these findings remained consistent across different genders and in reverse MR. CONCLUSIONS: Our study found that OA patients had a higher risk of hypertension only among males in the observational study. However, MR analysis did not uncover any causal relationship between OA and hypertension.


Subject(s)
Hypertension , Osteoarthritis, Hip , Humans , Female , Male , Nutrition Surveys , Mendelian Randomization Analysis , Retrospective Studies , Genome-Wide Association Study
10.
BMJ Open ; 14(4): e079312, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594189

ABSTRACT

INTRODUCTION: Drivers for remission, relapse and violence-related behaviour among patients with schizophrenia are the most complicated issue. METHODS AND ANALYSIS: This study aims to recruit a longitudinal cohort of patients with schizophrenia. Two suburban districts and two urban districts were randomly selected according to health service facilities, population, geographical region and socioeconomic status. Individuals (>18 years old) who received a diagnosis of schizophrenia following the International Classification of Diseases (10th edition) criteria within the past 3 years will be invited as participants. Assessments will be carried out in local community health centres. Data will be used to (1) establish a community-based schizophrenia cohort and biobank, (2) prospectively determine the course of multidimensional functional outcomes of patients with schizophrenia who are receiving community-based mental health treatment, and (3) map the trajectories of patients with schizophrenia and prospectively determine the course of multidimensional outcomes based on the differential impact of potentially modifiable moderators. ETHICS AND DISSEMINATION: The study has been reviewed and approved by the Human Research Ethics Committee of Shanghai Mental Health Center (2021-67). Results of the study will be disseminated through peer-reviewed journals. If effective, related educational materials will be released to the public.


Subject(s)
Mental Health , Schizophrenia , Humans , Adolescent , Schizophrenia/therapy , China
11.
J Cardiothorac Surg ; 19(1): 197, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600499

ABSTRACT

BACKGROUND: Left atrial myxoma during pregnancy is rare. We present three cases in order to aid in the management. CASE PRESENTATION: Three cases of left atrial myxoma during pregnancy were presented in this article. Three patients all received multidisciplinary team work and acquired good outcomes. The case 1 had no symptoms and delivered before traditional cardiac surgery. The case 2 and case 3 undergone totally endoscopic minimally invasive cardiac surgery during pregnancy. The case 3 maintained pregnancy to term and gave birth to a healthy baby via vaginal delivery. No relapse of the tumor was observed. CONCLUSIONS: The management of left atrial myxoma during pregnancy ought to be individualized and combined with the gestational age. If the diagnosis was made in the first two trimesters of pregnancy, totally endoscopic minimally invasive cardiac surgery during pregnancy would be an optimal choice. The patients can benefit from the multidisciplinary team work.


Subject(s)
Heart Neoplasms , Myxoma , Humans , Pregnancy , Female , Pregnant Women , Heart Atria/surgery , Neoplasm Recurrence, Local , Heart Neoplasms/diagnosis , Heart Neoplasms/surgery , Myxoma/diagnosis , Myxoma/surgery
12.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38682465

ABSTRACT

Vitamin E (VE) is a potent nutritional antioxidant that is critical in alleviating poultry oxidative stress. However, the hydrophobic nature and limited stability of VE restrict its effective utilization. Nanotechnology offers a promising approach to enhance the bioavailability of lipophilic vitamins. The objective of this experiment was to investigate the effects of different sources and addition levels of VE on the growth performance, antioxidant capacity, VE absorption site, and pharmacokinetics of Arbor Acres (AA) broilers. Three hundred and eighty-four 1-d-old AA chicks were randomly allocated into four groups supplemented with 30 and 75 IU/kg VE as regular or nano. The results showed that dietary VE sources had no significant impact on broiler growth performance. However, chickens fed 30 IU/kg VE had a higher average daily gain at 22 to 42 d and 1 to 42 d, and lower feed conversion ratio at 22 to 42 d than 75 IU/kg VE (P < 0.05). Under normal feeding conditions, broilers fed nano VE (NVE) displayed significantly higher superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) enzyme activities and lower malonic dialdehyde (MDA) concentration (P < 0.05). Similarly, NVE had a higher antioxidant effect in the dexamethasone-constructed oxidative stress model. It was found that nanosizing technology had no significant effect on the absorption of VE in the intestinal tract by examining the concentration of VE in the intestinal tract (P > 0.05). However, compared to broilers perfused with regular VE (RVE), the NVE group displayed notably higher absorption rates at 11.5 and 14.5 h (P < 0.05). Additionally, broilers perfused with NVE showed a significant increase in the area under the concentration versus time curve from zero to infinity (AUC0-∞), mean residence time (MRT0-∞), elimination half-life (t1/2z), and peak concentration (Cmax) of VE in plasma (P < 0.05). In summary, nanotechnology provides more effective absorption and persistence of VE in the blood circulation for broilers, which is conducive to the function of VE and further improves the antioxidant performance of broilers.


With the rapid development of intensive farming, factors such as high temperature, harmful gases, high-fat and high-protein diets, and changes in feeding methods have become causes of oxidative stress in animals. Studies have shown that oxidative stress decreases livestock feed intake and slows growth in animals, thereby affecting the quality of livestock products. Antioxidants and micronutrients are commonly added to animal feed to reduce the effects of oxidative stress. Since the progress in nanotechnology, nanovitamins have gained extensive recognition due to their novel qualities, including a high level of adsorption capacity and low toxicity. Therefore, the present study compared the effects of dietary supplementation with different sources of vitamin E (regular, RVE vs. nano, NVE) and varying inclusion levels on the growth performance, antioxidant capacity, VE absorption sites, and pharmacokinetics in AA broilers. The results indicated that supplementing broiler diets with NVE provides superior antioxidant benefits compared to RVE. This improvement is attributed to the enhanced absorption efficiency and extended half-life of NVE, both contributing to increased antioxidant performance of broilers.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Vitamin E , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Animal Feed/analysis , Diet/veterinary , Vitamin E/administration & dosage , Vitamin E/pharmacokinetics , Vitamin E/pharmacology , Dietary Supplements/analysis , Oxidative Stress/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Animal Nutritional Physiological Phenomena , Male , Random Allocation
13.
J Med Chem ; 67(9): 7385-7405, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38687956

ABSTRACT

Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.


Subject(s)
Anti-Inflammatory Agents , Colitis , Pyruvate Carboxylase , Saponins , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Colitis/drug therapy , Colitis/chemically induced , Dextran Sulfate , Drug Discovery , Mice, Inbred C57BL , Pyruvate Carboxylase/antagonists & inhibitors , Pyruvate Carboxylase/metabolism , RAW 264.7 Cells , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Saponins/chemical synthesis , Structure-Activity Relationship
14.
J Cancer Res Clin Oncol ; 150(3): 138, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502341

ABSTRACT

PURPOSE: WeChat-based education and care program serves as a promising nursing method for relieving mental stress in parents of pediatric patients. This study purposed to explore the influence of the WeChat education and care program (WECP) on mental health, insomnia, and general state of health in parents of pediatric acute lymphoblastic leukemia (ALL) patients. METHODS: Totally, 146 parents of 73 primary pediatric ALL patients were randomized into the WECP group (74 parents of 37 patients) and standard care (SC) group (72 parents of 36 patients) to receive a 6-month corresponding intervention. Self-rating anxiety scale (SAS), self-rating depression scale (SDS), Athens insomnia scale (AIS), and 12-item general health questionnaire (GHQ-12) were assessed in parents of patients. RESULTS: SAS scores at the third month (M3) (P = 0.041) and M6 (P = 0.032) were reduced in WECP group versus SC group. SAS-defined anxiety rate at M6 (P = 0.035) was declined in WECP group versus SC group. SDS score at M6 was descended in WECP group versus SC group (P = 0.024). However, there was no discrepancy in SDS-defined depression rate at any time point between groups (all P > 0.05). AIS scores at M1 (P = 0.015) and M6 (P = 0.021), as well as GHQ-12 scores at M3 (P = 0.007) and M6 (P = 0.001) were decreased in WECP group versus SC group. By subgroup analyses, WECP exhibited good effects at M6 in mothers, but not in fathers. CONCLUSION: WECP is a feasible and efficacy intervention to improve mental stress and health status among parents of pediatric ALL patients, especially in mothers.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sleep Initiation and Maintenance Disorders , Humans , Child , Depression/therapy , Depression/psychology , Sleep Initiation and Maintenance Disorders/therapy , Anxiety/therapy , Anxiety/psychology , Parents/psychology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
15.
Psychiatry Res ; 335: 115841, 2024 May.
Article in English | MEDLINE | ID: mdl-38522150

ABSTRACT

Schizophrenia is a severe mental disorder characterized by intricate and underexplored interactions between psychological symptoms and metabolic health, presenting challenges in understanding the disease mechanisms and designing effective treatment strategies. To delve deeply into the complex interactions between mental and metabolic health in patients with schizophrenia, this study constructed a psycho-metabolic interaction network and optimized the Graph Attention Network (GAT). This approach reveals complex data patterns that traditional statistical analyses fail to capture. The results show that weight management and medication management play a central role in the interplay between psychiatric disorders and metabolic health. Furthermore, additional analysis revealed significant correlations between the history of psychiatric symptoms and physical health indicators, as well as the key roles of biochemical markers(e.g., triglycerides and low-density lipoprotein cholesterol), which have not been sufficiently emphasized in previous studies. This highlights the importance of medication management approaches, weight management, psychological treatment, and biomarker monitoring in comprehensive treatment and underscores the significance of the biopsychosocial model. This study is the first to utilize a GNN to explore the interactions between schizophrenia symptoms and metabolic features, providing new insights into understanding psychiatric disorders and guiding the development of more comprehensive treatment strategies for schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/complications , Cholesterol, LDL , Research Design , Triglycerides
16.
J Environ Manage ; 356: 120633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513579

ABSTRACT

Although straw returning combined with blended controlled-release urea fertilizer (BUFS) has been shown to improve wheat-maize rotation system productivity, their effects on greenhouse gas (GHG) emissions, carbon footprints (CF), and net ecosystem economic benefits (NEEB) are still unknown. Life cycle assessment was used to investigate a long-term (2013-2022) wheat-maize rotation experiment that included straw combined with two N fertilizer types [BUFS and (conventional urea fertilizer) CUFS] and straw-free treatments (BUF and CUF). The results showed that BUFS and CUFS treatments increased the annual yield by 13.8% and 11.5%, respectively, compared to BUF and CUF treatments. The BUFS treatment increased the yearly yield by 13.8% compared to the CUFS treatment. Since BUFS and CUFS treatments increased soil organic carbon (SOC) sink sequestration by 25.0% and 27.0% compared to BUF and CUF treatments, they reduced annual GHG emissions by 7.1% and 4.7% and CF per unit of yield (CFY) by 13.7% and 9.6%, respectively. BUFS treatment also increased SOC sink sequestration by 20.3%, reduced GHG emissions by 10.7% and CFY by 23.0% compared to CUFS treatment. It is worth noting that the BUFS and CUFS treatments increased the annual ecological costs by 41.6%, 26.9%, and health costs by 70.1% and 46.7% compared to the BUF and CUF treatments, but also increased the net yield benefits by 9.8%, 6.8%, and the soil nutrient cycling values by 29.2%, 27.3%, and finally improved the NEEB by 10.1%, 7.3%, respectively. Similar results were obtained for the BUFS treatment compared to the CUFS treatment, ultimately improving the NEEB by 23.1%. Based on assessing yield, GHG emissions, CF, and NEEB indicators, the BUFS treatment is recommended as an ideal agricultural fertilization model to promote sustainable and clean production in the wheat-maize rotation system and to protect the agroecological environment.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Soil , Fertilizers , Carbon/analysis , Ecosystem , Delayed-Action Preparations , Agriculture/methods , Zea mays , Triticum , China , Nitrous Oxide/analysis
17.
Chem Biol Interact ; 393: 110938, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38484825

ABSTRACT

Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.


Subject(s)
NF-E2-Related Factor 2 , Radiation Injuries , Triterpenes , Humans , Mice , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress , DNA Repair , DNA Damage , Radiation Injuries/drug therapy , Radiation Injuries/prevention & control , DNA/metabolism , Apoptosis
18.
J Trace Elem Med Biol ; 84: 127427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518386

ABSTRACT

Heavy metal exposure is a known risk factor for hematologic disorders in children, yet the impact of co-exposure to multiple metals remains underexplored. This cross-sectional study investigates the relationship between urinary levels of 23 metals and haemoglobin (Hb) in 1460 Chinese preschoolers. The concentrations of the 23 urinary metals were quantified using an inductively coupled plasma mass spectrometer, while Hb levels were assessed through finger prick blood samples. To evaluate the co-exposure effects, we employed three approaches: Generalized linear regression model, joint effect models including Quantile g-Computation and Bayesian Kernel Machine Regression (BKMR). From the generalized linear regression and Quantile g-computation, urinary uranium, thallium, aluminium, iron and tungsten were correlated negatively with Hb, while urinary barium was correlated positively (all P < 0.05). Moreover, significant negative associations between metal mixtures exposure with Hb were identified in both Quantile g-computation [ß (95% CI): -0.083 (-0.132, -0.033), P = 0.0012] and BKMR [90th percentile vs. 50th percentile ß (95% CI): -0.238 (-0.368, -0.107), P < 0.001] with aluminium emerging as the primary contributor to this joint effect (weight in Quantile g-computation = 0.399, PIPs in BKMR = 0.896). These findings provide a potential explanation for environmental exposure to metals and Hb-related disease in preschoolers.


Subject(s)
Hemoglobins , Humans , Child, Preschool , Male , Female , Hemoglobins/analysis , Hemoglobins/metabolism , Cross-Sectional Studies , China , Metals, Heavy/urine , Metals, Heavy/blood , Metals/urine , Metals/blood , Environmental Exposure/adverse effects , Environmental Exposure/analysis , East Asian People
19.
Front Cardiovasc Med ; 11: 1300508, 2024.
Article in English | MEDLINE | ID: mdl-38468722

ABSTRACT

A totally endoscopic minimally invasive approach is widely used for cardiac valve surgery in normal adults. However, minimally invasive cardiac surgery during pregnancy is rarely reported. In addition to traditional median thoracotomy, totally endoscopic minimally invasive approaches can now be used for pregnant patients. We describe our experience with totally endoscopic cardiac valve surgery (TECVS) during pregnancy, which is safe for both mothers and fetuses.

20.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472451

ABSTRACT

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Subject(s)
Motor Disorders , Parkinson Disease , Animals , Mice , Histones/metabolism , Methylation , Neurons/metabolism , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...