Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 13(1): 42, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307847

ABSTRACT

Supercontinuum (SC) light source has advanced ultrafast laser spectroscopy in condensed matter science, biology, physics, and chemistry. Compared to the frequently used photonic crystal fibers and bulk materials, femtosecond laser filamentation in gases is damage-immune for supercontinuum generation. A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level. We demonstrated stable kHz supercontinuum generation directly in air with multiple mJ level pulse energy. This was achieved by applying an external DC electric field to the air plasma filament. Beam pointing jitters of the 1 kHz air filament induced SC light were reduced by more than 2 fold. The stabilized high repetition rate laser filament offers the opportunity for stable intense SC generation and its applications in air.

2.
Opt Lett ; 45(16): 4444-4447, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32796979

ABSTRACT

We experimentally investigate the laser polarization effect on the supercontinuum (SC) generation through femtosecond laser filamentation in air. By tuning filamenting laser ellipticity from linear polarization to circular polarization, the spectral intensity of the SC after filamentation gradually increases, while the spectral bandwidth of the SC continuously decreases. The laser ellipticity-dependent spectral intensity modulation of the SC is stronger at higher filamenting pulse energy. Laser energy deposits more in linearly polarized laser filaments than in circularly polarized laser filaments. The experimental results are supported by numerical simulations. A physical picture based on the laser ellipticity-dependent clamped intensity inside the filament, together with the Kerr nonlinearity and plasma related self-phase modulations, is proposed to explain the observation.

3.
Opt Express ; 28(10): 15529-15541, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403579

ABSTRACT

Modulation and direct measurement of the radial fluence distribution inside a single filament core (especially less than 100 µm in diameter) is crucial to filament-based applications. We report direct measurements of the radial fluence distribution inside a femtosecond laser filament core and its evolution via the filament-induced ablation method. The radial fluence distributions were modulated by manipulating the input pulse diffraction through an iris. Compared with using a traditionally circular iris, a stellate iris substantially suppressed the diffraction effect, and laser fluence, intensity and plasma density inside the filament core were considerably increased. The radial fluence inside filament cores was also quantitatively measured via the filament drilling diaphragms approach. Furthermore, numerical simulations were performed to support the experimental results by solving nonlinear Schrödinger equations. The effects of the tooth size of the stellate iris were numerically investigated, which indicated that bigger tooth favors higher fluence and longer filament. In addition to being beneficial in understanding the filamentation process and its control, the results of this study can also be valuable for filament-based applications.

4.
Sci Rep ; 8(1): 13511, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30202066

ABSTRACT

We report on a method to experimentally generate ionic wind by coupling an external large electric field with an intense femtosecond laser induced air plasma channel. The measured ionic wind velocity could be as strong as >4 m/s. It could be optimized by increasing the strength of the applied electric field and the volume of the laser induced plasma channel. The experimental observation was qualitatively confirmed by a numerical simulation of spatial distribution of the electric field. The ionic wind can be generated outside a high-voltage geometry, even at remote distances.

5.
Opt Express ; 26(3): 2785-2793, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401814

ABSTRACT

Water condensation and precipitation induced by 22-TW 800-nm laser pulses at 1 Hz in an open cloud chamber were investigated in a time-resolved manner. Two parts of precipitation in two independent periods of time were observed directly following each laser shot. One part started around the filament zone at t < 500 µs and ended at t ≅ 1.5 ms after the arrival of the femtosecond laser pulse. The other following the laser-induced energetic air motion (turbulence), started at t ≅ 20 ms and ended at t ≅ 120 ms. Meanwhile, the phase transitions of large-size condensation droplets with diameters of 400-500 µm from liquid to solid (ice) in a cold area (T < -30 °C) were captured at t ≅ 20 ms.

6.
Sci Rep ; 7(1): 11749, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924141

ABSTRACT

Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

7.
Opt Express ; 25(10): 11078-11087, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788791

ABSTRACT

We present a novel method based on plasma-guided corona discharges to probe the plasma density longitudinal distribution, which is particularly good for the weakly ionized plasmas (~1014 cm-3). With this method, plasma density longitudinal distribution inside both a weakly ionized plasma and a filament were characterized. When a high voltage electric field was applied onto a plasma channel, the original ionization created by a laser pulse would be enhanced and streamer coronas formed along the channel. By measuring the fluorescence of enhanced ionization, in particular, on both ends of a filament, the weak otherwise invisible plasma regions created by the laser pulse were identified. The observed plasma guided coronas were qualitatively understood by solving a 3D Maxwell equation through finite element analysis. The technique paves a new way to probe low density plasma and to precisely measure the effective length of plasma inside a filament.

8.
Opt Express ; 24(18): 20494-506, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607654

ABSTRACT

We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

9.
Sci Rep ; 5: 18681, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26679271

ABSTRACT

Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...