Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Virology ; 509: 90-97, 2017 09.
Article in English | MEDLINE | ID: mdl-28624679

ABSTRACT

Avian influenza A (H5N1) viruses represent a growing threat for an influenza pandemic. The presence of widespread avian influenza virus infections further emphasizes the need for vaccine strategies for control of pre-pandemic H5N1 and other avian influenza subtypes. Influenza neuraminidase (NA) vaccines represent a potential strategy for improving vaccines against avian influenza H5N1 viruses. To evaluate a strategy for NA vaccination, we generated a recombinant influenza virus-like particle (VLP) vaccine comprised of the NA protein of A/Indonesia/05/2005 (H5N1) virus. Ferrets vaccinated with influenza N1 NA VLPs elicited high-titer serum NA-inhibition (NI) antibody titers and were protected from lethal challenge with A/Indonesia/05/2005 virus. Moreover, N1-immune ferrets shed less infectious virus than similarly challenged control animals. In contrast, ferrets administered control N2 NA VLPs were not protected against H5N1 virus challenge. These results provide support for continued development of NA-based vaccines against influenza H5N1 viruses.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Virus-Like Particle/immunology , Viral Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Ferrets , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Neuraminidase/genetics , Survival Analysis , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Proteins/genetics , Virus Shedding
2.
Vaccine ; 35(12): 1586-1589, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28237499

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and protected mice from MERS-CoV infection in vivo.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
3.
Vaccine ; 33(18): 2152-8, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25772674

ABSTRACT

In March 2013, diagnosis of the first reported case of human infection with a novel avian-origin influenza A(H7N9) virus occurred in eastern China. Most human cases have resulted in severe respiratory illness and, in some instances, death. Currently there are no licensed vaccines against H7N9 virus, which continues to cause sporadic human infections. Recombinant virus-like particles (VLPs) have been previously shown to be safe and effective vaccines for influenza. In this study, we evaluated the immunogenicity and protective efficacy of a H7N9 VLP vaccine in the ferret challenge model. Purified recombinant H7N9 VLPs morphologically resembled influenza virions and elicited high-titer serum hemagglutination inhibition (HI) and neutralizing antibodies specific for A/Anhui/1/2013 (H7N9) virus. H7N9 VLP-immunized ferrets subsequently challenged with homologous virus displayed reductions in fever, weight loss, and virus shedding compared to these parameters in unimmunized control ferrets. H7N9 VLP was also effective in protecting against lung and tracheal infection. The addition of either ISCOMATRIX or Matrix-M1 adjuvant improved immunogenicity and protection of the VLP vaccine against H7N9 virus. These results provide support for the development of a safe and effective human VLP vaccine with potent adjuvants against avian influenza H7N9 virus with pandemic potential.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , China , Cholesterol/immunology , Disease Models, Animal , Drug Combinations , Ferrets , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Phospholipids/immunology , Saponins/immunology , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Viral Load
4.
Vaccine ; 32(26): 3169-3174, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24736006

ABSTRACT

Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/prevention & control , Nanoparticles , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Coronavirus , Cross Protection , Mice , Mice, Inbred BALB C , Neutralization Tests , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/biosynthesis
5.
Vaccine ; 29(38): 6606-13, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21762752

ABSTRACT

SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 µg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 µg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents.


Subject(s)
Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Matrix Proteins/genetics , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Baculoviridae/genetics , Body Weight , Disease Models, Animal , Female , Genetic Vectors , Insecta , Lung/virology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Rodent Diseases/prevention & control , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus , Survival Analysis , Vaccines, Virosome/genetics , Vaccines, Virosome/immunology , Viral Envelope Proteins/metabolism , Viral Load , Viral Matrix Proteins/metabolism , Viral Vaccines/genetics
6.
J Cell Physiol ; 217(2): 319-27, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18506785

ABSTRACT

Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha) as well as its downstream target genes; and (b) could be overcome by HIF-1alpha replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells (CACs) were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1alpha gene therapy. HIF-1alpha mRNA levels in wound tissue were significantly reduced in older (4-6 months) as compared to younger (1.5-2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet-derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1alpha, followed by electroporation, induced increased levels of HIF-1alpha mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. CACs in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1alpha gene therapy corrects the age-dependent impairment of HIF-1alpha expression, angiogenic cytokine expression, and CACs that contribute to the age-dependent impairment of wound healing in db/db mice.


Subject(s)
Diabetes Mellitus/therapy , Electrochemotherapy , Endothelial Cells/metabolism , Genetic Therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Physiologic , Wound Healing , Age Factors , Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Animals , Blood Glucose/metabolism , Cell Line , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Disease Models, Animal , Down-Regulation , Endothelial Cells/pathology , Female , Homeostasis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Mutant Strains , Placenta Growth Factor , Platelet-Derived Growth Factor/metabolism , Pregnancy Proteins/metabolism , RNA, Messenger/metabolism , Time Factors , Transfection , Vascular Endothelial Growth Factor A/metabolism
7.
Circ Res ; 101(12): 1310-8, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-17932327

ABSTRACT

Ischemia is a stimulus for production of angiogenic cytokines that activate local vascular cells and mobilize angiogenic cells to the circulation. These responses are impaired in elderly patients with peripheral arterial disease. Hypoxia-inducible factor (HIF)-1 mediates adaptive responses to ischemia, including production of angiogenic cytokines. In this study, we demonstrate that aging and HIF-1 loss-of-function impair the expression of multiple angiogenic cytokines, mobilization of angiogenic cells, maintenance of tissue viability, and recovery of limb perfusion following femoral artery ligation. We show that HIF-1 directly activates transcription of the gene encoding stem cell factor and that mice lacking the cognate receptor C-KIT have impaired recovery from ischemia. Administration of AdCA5, an adenovirus encoding a constitutively active form of HIF-1alpha, improved the recovery of perfusion in older mice to levels similar to those in young mice. Injection of AdCA5 into nonischemic limb was sufficient to increase the number of circulating angiogenic cells. These results indicate that HIF-1 activity is necessary and sufficient for the mobilization of angiogenic cells and that HIF-1alpha gene therapy can counteract the pathological effects of aging in a mouse model of limb ischemia.


Subject(s)
Aging/metabolism , Cell Movement/physiology , Hypoxia-Inducible Factor 1/metabolism , Ischemia/genetics , Ischemia/therapy , Lower Extremity/blood supply , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/therapy , Aging/genetics , Aging/pathology , Animals , Cell Movement/genetics , Cells, Cultured , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/therapeutic use , Ischemia/metabolism , Ischemia/pathology , Lower Extremity/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Neovascularization, Pathologic/metabolism , Reperfusion/methods
8.
J Biol Chem ; 282(51): 37064-73, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-17965024

ABSTRACT

Oxygen homeostasis represents an essential organizing principle of metazoan evolution and biology. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of transcriptional responses to changes in O2 concentration. HIF-1 is a heterodimer of HIF-1alpha and HIF-1beta subunits. O2-dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase, von Hippel-Lindau protein (VHL)/Elongin-C E3 ubiquitin ligase, and the proteasome. O2-independent degradation of HIF-1alpha is regulated by the competition of RACK1 and HSP90 for binding to HIF-1alpha. RACK1 binding results in the recruitment of the Elongin-C E3 ubiquitin ligase, leading to VHL-independent ubiquitination and degradation of HIF-1alpha. In this report, we show that calcineurin inhibits the ubiquitination and proteasomal degradation of HIF-1alpha. Calcineurin is a serine/threonine phosphatase that is activated by calcium and calmodulin. The phosphatase activity of calcineurin is required for its regulation of HIF-1alpha. RACK1 binds to the catalytic domain of calcineurin and is required for HIF-1alpha degradation induced by the calcineurin inhibitor cyclosporine A. Elongin-C and HIF-1alpha each bind to RACK1 and dimerization of RACK1 is required to recruit Elongin-C to HIF-1alpha. Phosphorylation of RACK1 promotes its dimerization and dephosphorylation by calcineurin inhibits dimerization. Serine 146 within the dimerization domain is phosphorylated and mutation of serine 146 impairs RACK1 dimerization and HIF-1alpha degradation. These results indicate that intracellular calcium levels can regulate HIF-1alpha expression by modulating calcineurin activity and RACK1 dimerization.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , Calmodulin/metabolism , GTP-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cell Line , Cyclosporine/pharmacology , Dimerization , Elongin , Enzyme Activation/drug effects , Enzyme Activation/physiology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , HSP90 Heat-Shock Proteins/metabolism , Humans , Oxygen/metabolism , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Tertiary/physiology , Receptors for Activated C Kinase , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Ubiquitination/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
9.
J Biol Chem ; 282(46): 33358-33366, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-17875644

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a master regulator of oxygen homeostasis that controls the expression of genes encoding proteins that play key roles in angiogenesis, erythropoiesis, and glucose/energy metabolism. The stability of the HIF-1alpha subunit is regulated by ubiquitination and proteasomal degradation. In aerobic cells, O(2)-dependent prolyl hydroxylation of HIF-1alpha is required for binding of the von Hippel-Lindau tumor suppressor protein VHL, which then recruits the Elongin C ubiquitin-ligase complex. SSAT2 (spermidine/spermine N-acetyltransferase-2) binds to HIF-1alpha and promotes its ubiquitination/degradation by stabilizing the interaction of VHL and Elongin C. Treatment of cells with heat shock protein HSP90 inhibitors induces the degradation of HIF-1alpha even under hypoxic conditions. HSP90 competes with RACK1 for binding to HIF-1alpha, and HSP90 inhibition leads to increased binding of RACK1, which recruits the Elongin C ubiquitin-ligase complex to HIF-1alpha in an O(2)-independent manner. In this work, we demonstrate that SSAT1, which shares 46% amino acid identity with SSAT2, also binds to HIF-1alpha and promotes its ubiquitination/degradation. However, in contrast to SSAT2, SSAT1 acts by stabilizing the interaction of HIF-1alpha with RACK1. Thus, the paralogs SSAT1 and SSAT2 play complementary roles in promoting O(2)-independent and O(2)-dependent degradation of HIF-1alpha.


Subject(s)
Acetyltransferases/physiology , GTP-Binding Proteins/chemistry , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasm Proteins/chemistry , Receptors, Cell Surface/chemistry , Ubiquitin/chemistry , Acetyltransferases/metabolism , Elongin , HSP90 Heat-Shock Proteins/metabolism , Humans , Hypoxia , Models, Biological , Oxygen/metabolism , Protein Binding , Protein Interaction Mapping , RNA, Small Interfering/metabolism , Receptors for Activated C Kinase , Transcription Factors/chemistry , Two-Hybrid System Techniques
10.
J Biol Chem ; 282(32): 23572-80, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17558023

ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor that functions as a master regulator of oxygen homeostasis. The HIF-1alpha subunit is subjected to O(2)-dependent prolyl hydroxylation leading to ubiquitination by the von Hippel-Lindau protein (VHL)-Elongin C ubiquitin-ligase complex and degradation by the 26 S proteasome. In this study, we demonstrate that spermidine/spermine-N(1)-acetyltransferase (SSAT) 2 plays an essential role in this process. SSAT2 binds to HIF-1alpha, VHL, and Elongin C and promotes ubiquitination of hydroxylated HIF-1alpha by stabilizing the interaction of VHL and Elongin C. Multivalent interactions by SSAT2 provide a mechanism to ensure efficient complex formation, which is necessary for the extremely rapid ubiquitination and degradation of HIF-1alpha that is observed in oxygenated cells.


Subject(s)
Acetyltransferases/chemistry , Acetyltransferases/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Ubiquitin-Protein Ligases/metabolism , Cell Line , Elongin , Genetic Vectors , Glutathione Transferase/metabolism , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Models, Biological , Oxygen/metabolism , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Transcription Factors/chemistry , Two-Hybrid System Techniques , Von Hippel-Lindau Tumor Suppressor Protein/chemistry
11.
Cell Cycle ; 6(6): 656-9, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17361105

ABSTRACT

Oxygen homeostasis represents an essential organizing principle of metazoan evolution and biology. Hypoxia-inducible factor 1 (HIF-1) regulates transcription in response to changes in O2 concentration. HIF-1 is a heterodimeric transcription factor that consists of HIF-1alpha and HIF-1beta subunits. O2 -dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase (PHD), the von Hippel-Lindau (VHL)/Elongin-C/Elongin-B E3 ubiquitin ligase, and the proteasome. Inhibitors of heat shock protein 90 (HSP90) dissociate HSP90 from HIF-1alpha and induce O2/PHD/VHL-independent degradation of HIF-1alpha. Recently, we reported the identification of receptor of activated protein C kinase (RACK1) as a novel HIF-1alpha interacting protein. RACK1 promotes the O2/PHD/VHL-independent and proteasome-dependent degradation of HIF-1alpha. RACK1 competes with HSP90 for binding to the PAS-A domain of HIF-1alpha. RACK1 activity is required for the mechanism of action for the HSP90 inhibitor 17-allylaminogeldanamycin to induce HIF-1alpha degradation. RACK1 binds to Elongin-C and recruits Elongin-B and other components of E3 ubiquitin ligase to HIF-1alpha. The ubiquitination and degradation of HIF-1alpha are promoted by RACK1. RACK1 is an essential component of an O2/PHD/VHL-independent system for regulating HIF-1alpha stability through competition with HSP90 and recruitment of the Elongin-C/B ubiquitin ligase complex. Here we discuss how this system may be regulated.


Subject(s)
GTP-Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Binding, Competitive , Elongin , GTP-Binding Proteins/genetics , GTP-Binding Proteins/physiology , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/physiology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Protein Binding , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Mol Cell ; 25(2): 207-17, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17244529

ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) regulates transcription in response to changes in O(2) concentration. O(2)-dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase (PHD), the von Hippel-Lindau (VHL)/Elongin-C/Elongin-B E3 ubiquitin ligase complex, and the proteasome. Inhibition of heat-shock protein 90 (HSP90) leads to O(2)/PHD/VHL-independent degradation of HIF-1alpha. We have identified the receptor of activated protein kinase C (RACK1) as a HIF-1alpha-interacting protein that promotes PHD/VHL-independent proteasomal degradation of HIF-1alpha. RACK1 competes with HSP90 for binding to the PAS-A domain of HIF-1alpha in vitro and in human cells. HIF-1alpha degradation induced by the HSP90 inhibitor 17-allylaminogeldanamycin is abolished by RACK1 loss of function. RACK1 binds to Elongin-C and promotes ubiquitination of HIF-1alpha. Elongin-C-binding sites in RACK1 and VHL show significant sequence similarity. Thus, RACK1 is an essential component of an O(2)/PHD/VHL-independent mechanism for regulating HIF-1alpha stability through competition with HSP90 and recruitment of the Elongin-C/B ubiquitin ligase complex.


Subject(s)
GTP-Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Benzoquinones/pharmacology , Binding, Competitive , Cell Line , Elongin , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , Humans , In Vitro Techniques , Lactams, Macrocyclic/pharmacology , Molecular Sequence Data , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Oxygen/metabolism , Protein Binding , Proteomics , RNA Interference , Receptors for Activated C Kinase , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Sequence Homology, Amino Acid , Transcription Factors/metabolism , Transcriptional Activation , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
13.
Biochem Cell Biol ; 81(3): 241-51, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12897858

ABSTRACT

Enhancers are regulatory DNA sequences that can work over a large distance. Efficient enhancer action over a distance clearly requires special mechanisms for facilitating communication between the enhancer and its target. While the chromatin looping model can explain the majority of the observations, some recent experimental findings suggest that a chromatin scanning mechanism is used to establish the loop. These new findings help to understand the mechanism of action of the elements that can prevent enhancer-promoter communication (insulators).


Subject(s)
Enhancer Elements, Genetic/physiology , Insulator Elements/physiology , Animals , Binding Sites/genetics , Chromatin/genetics , DNA/chemistry , DNA/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Humans , Insulator Elements/genetics , Models, Genetic , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...