Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(4)2022 02 18.
Article in English | MEDLINE | ID: mdl-35216381

ABSTRACT

A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide-polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.


Subject(s)
Analgesics/pharmacology , Funnel Chest/drug therapy , Funnel Chest/surgery , Nanofibers/administration & dosage , Animals , Minimally Invasive Surgical Procedures/methods , Polyesters/chemistry , Polyglycolic Acid/pharmacology , Printing, Three-Dimensional , Rabbits , Plastic Surgery Procedures/methods , Thoracic Wall/drug effects , Thoracic Wall/surgery , Treatment Outcome
2.
Pharmaceutics ; 13(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34834171

ABSTRACT

Stent implantation impairs local endothelial function and may be associated with subsequent adverse cardiovascular events. Telmisartan, an angiotensin II receptor blocker that has unique peroxisome proliferator-activated-receptor-gamma-mediated effects on cardiovascular disease, has been shown to enhance endothelial function and limit neointimal hyperplasia. This study utilized hybrid biodegradable/stent nanofibers to facilitate sustained and local delivery of telmisartan to injured arterial vessels. Telmisartan and poly(d,l)-lactide-co-glycolide (PLGA) (75:25) were dissolved in hexafluoroisopropyl alcohol and electrospun into biodegradable nanofibrous tubes which were coated onto metal stents. By releasing 20% of the loaded telmisartan in 30 days, these hybrid biodegradable/stent telmisartan-loaded nanofibers increased the migration of endothelial progenitor cells in vitro, promoted endothelialization, and reduced intimal hyperplasia. As such, this work provides insights into the use of PLGA nanofibers for treating patients with an increased risk of stent restenosis.

3.
Pharmaceutics ; 12(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979198

ABSTRACT

Brain abscesses are emergent and life-threating despite advances in modern neurosurgical techniques and antibiotics. The present study explores the efficacy of vancomycin embedded to 50:50 poly(lactic-co-glycolide acid) (PLGA) microparticles in the treatment of brain abscess. The vancomycin embedded microparticles (VMPs) were stereotactically introduced into the cerebral parenchyma in Staphylococcus aureus bacteria- induced brain abscess-bearing rats. Experimental rats were divided into three groups: group A (n = 13; no treatment), group B (n = 14; daily vancomycin injection (5 mg intraperitoneally), and group C (n = 12; stereotactic introduction of VMPs into the abscess cavity). Group C exhibited no inflammatory response and significantly increased survival and reduced mean abscess volumes (p <0.001) at the eighth week, compared with other groups. Vancomycin delivery via a biodegradable PLGA vehicle can easily attain Area Under the Curve (AUC)/minimum inhibitory concentration (MIC) ratios of ≥400, and strengthens the therapeutic efficacy of antibiotics without provoking any potential toxicity. Biodegradable VMPs are a safe and sustainable drug delivery vehicle for the treatment of brain abscess.

4.
Int J Nanomedicine ; 14: 4007-4016, 2019.
Article in English | MEDLINE | ID: mdl-31213812

ABSTRACT

Background: This study exploited sheath-core-structured lidocaine/human EGF (hEGF)-loaded anti-adhesive poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous films for surgical wounds via a co-axial electrospinning technique. Materials and methods: After spinning, the properties of the co-axially spun membranes were characterized by scanning electron microscopy, laser-scanning confocal microscopy, Fourier Transform Infrared spectrometry, water contact angle measurements, and tensile tests. Furthermore, a HPLC analysis and an ELISA evaluated the in vitro and in vivo release curves of lidocaine and hEGF from the films. Results: PLGA anti-adhesion nanofibers eluted high levels of lidocaine and hEGF for over 32 and 27 days, respectively, in vitro. The in vivo evaluation of post-surgery recovery in a rat model demonstrated that no adhesion was noticed in tissues at 2 weeks after surgery illustrating the anti-adhesive performance of the sheath-core-structured nanofibers. Nanofibrous films effectively released lidocaine and hEGF for >2 weeks in vivo. In addition, rats implanted with the lidocaine/hEGF nanofibrous membranes exhibited greater activities than the control demonstrating the pain relief efficacy of the films. Conclusion: The empirical outcomes suggested that the anti-adhesive nanofibrous films with extended release of lidocaine and hEGF offer post-operative pain relief and wound healing.


Subject(s)
Adhesives/therapeutic use , Epidermal Growth Factor/therapeutic use , Nanofibers/chemistry , Pain/drug therapy , Surgical Wound/drug therapy , Wound Healing/drug effects , Adhesives/pharmacology , Anesthetics, Local/pharmacology , Animals , Cell Survival/drug effects , Drug Liberation , Epidermal Growth Factor/pharmacology , Humans , Lidocaine/pharmacology , Lidocaine/therapeutic use , Male , Nanofibers/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Surgical Wound/pathology
5.
Int J Nanomedicine ; 14: 421-429, 2019.
Article in English | MEDLINE | ID: mdl-30666104

ABSTRACT

BACKGROUND: In this study, we developed biodegradable andrographolide (AG)-eluting nanofibrous mats and evaluated their efficacy in treating cervical cancer. MATERIALS AND METHODS: Membranes of two different poly[(d,l)-lactide-co-glycolide] (PLGA)-to-AG ratios (6:1 and 3:1) were prepared via electrospinning technology. The liberation behavior of AG was evaluated. A cervical cancer model with C57BL/6J mice was created and employed for an in vivo efficacy assessment of the drug-eluting nanofibers. Twelve mice with cervical cancer were stochastically divided into three different groups (four animals per group): group A received no treatment as the control, group B was treated with pure PLGA mats, and group C was treated with AG-loaded nanofibrous membranes. The changes in tumor sizes were recorded. RESULTS: All membranes eluted high concentrations of AG at the target area for three weeks, while the systemic drug concentration in the blood remained low. Histological analysis showed no obvious tissue inflammation. Compared with the mice in groups A and B, the tumor size of the mice in group C decreased with time until day 25, when the daily drug concentration reduced to 3 µg/mL. CONCLUSION: Biodegradable nanofibers with a sustainable release of AG exhibit adequate efficacy and durability for the treatment of mice with cervical cancer.


Subject(s)
Biocompatible Materials/chemistry , Diterpenes/therapeutic use , Nanofibers/chemistry , Uterine Cervical Neoplasms/drug therapy , Animals , Cell Line, Tumor , Diterpenes/chemistry , Diterpenes/pharmacology , Drug Carriers , Drug Liberation , Female , Membranes, Artificial , Mice, Inbred C57BL , Nanofibers/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tensile Strength , Tumor Burden/drug effects , Uterine Cervical Neoplasms/pathology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...