Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 7: 11285, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27088764

ABSTRACT

As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins.


Subject(s)
Amino Acid Motifs , RNA-Binding Proteins/metabolism , RNA/metabolism , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Binding Sites/genetics , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Molecular Structure , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA/chemistry , RNA/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Homology, Amino Acid
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 40-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24419377

ABSTRACT

NleC is one of the virulence factors that is injected into infected host cells by enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) via a needle-like protein complex called the type III secretion system (T3SS). The cytosolic NleC specifically cleaves the p65 subunit of NF-κB in the p65-p50 heterodimeric complex just after the Cys38 site in its N-terminal domain. The degradation of the remainder of the p65 C-terminal domain by the proteasome disrupts the NF-κB signalling pathway, thus dampening the host inflammatory response. Here, the crystal structure of NleC is reported at 1.55 Šresolution. In conjunction with biochemical analyses, the structure reveals that NleC is a member of the zincin zinc protease family and that the configuration of the NleC active site resembles that of the metzincin clan of metallopeptidases but without the canonical Met turn of astacin. The extended zinc-binding motif of NleC (HEXXHXXTXXXD) includes three metal ligands. The fifth zinc ligand, a conserved tyrosine (a bound water molecule is the fourth ligand), lies 45 residues downstream of the zincin motif. Furthermore, the electrostatic potential complementarity between NleC and p65 also contributes to the cleavage activity of the protease. These results not only provide important insights into the mechanism of how NleC recognizes its substrates, but also shed light on the design of new antibiotics for the food-borne diseases arising from EPEC and EHEC.


Subject(s)
Enteropathogenic Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Models, Molecular , Protein Conformation , Zinc/metabolism
5.
Structure ; 21(3): 493-9, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23473668

ABSTRACT

Necroptosis is a cellular mechanism that mediates necrotic cell death. The receptor-interacting serine/threonine protein kinase 1 (RIP1) is an essential upstream signaling molecule in tumor-necrosis-factor-α-induced necroptosis. Necrostatins, a series of small-molecule inhibitors, suppress necroptosis by specifically inhibiting RIP1 kinase activity. Both RIP1 structure and the mechanisms by which necrostatins inhibit RIP1 remain unknown. Here, we report the crystal structures of the RIP1 kinase domain individually bound to necrostatin-1 analog, necrostatin-3 analog, and necrostatin-4. Necrostatin, caged in a hydrophobic pocket between the N- and C-lobes of the kinase domain, stabilizes RIP1 in an inactive conformation through interactions with highly conserved amino acids in the activation loop and the surrounding structural elements. Structural comparison of RIP1 with the inhibitor-bound oncogenic kinase B-RAF reveals partially overlapping binding sites for necrostatin and for the anticancer compound PLX4032. Our study provides a structural basis for RIP1 inhibition by necrostatins and offers insights into potential structure-based drug design.


Subject(s)
Imidazoles/chemistry , Indoles/chemistry , Molecular Docking Simulation , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Baculoviridae/genetics , Crystallography, X-Ray , Drug Design , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Kinetics , Mutation , Necrosis , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Structure-Activity Relationship , Thermodynamics
6.
Cell ; 141(3): 446-57, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20434985

ABSTRACT

The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/metabolism , Calcium-Binding Proteins/chemistry , Amino Acid Sequence , Animals , Apoptosomes/metabolism , Apoptotic Protease-Activating Factor 1/metabolism , Caenorhabditis elegans/chemistry , Caspases/chemistry , Crystallography, X-Ray , Models, Molecular , Sequence Alignment , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...