Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 12(1): e0170450, 2017.
Article in English | MEDLINE | ID: mdl-28103298

ABSTRACT

Prevention of Alzheimer's disease (AD) is a major goal of biomedical sciences. In previous studies we showed that high intake of the essential nutrient, choline, during gestation prevented age-related memory decline in a rat model. In this study we investigated the effects of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amyloid precursor protein (APP) metabolites-specifically elevated amounts of ß-C-terminal fragment (ß-CTF) and reduced levels of solubilized amyloid Aß40 and Aß42 peptides; 2) reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyltransferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astrogliosis. The data suggest that dietary supplementation of choline during fetal development and early postnatal life may constitute a preventive strategy for AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Amyloid beta-Protein Precursor/genetics , Amyloidosis/prevention & control , Choline O-Acetyltransferase/metabolism , Choline/administration & dosage , Dietary Supplements , Hippocampus/metabolism , Presenilin-1/genetics , Alzheimer Disease/diet therapy , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/pathology , Animals , Animals, Newborn , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/pathology , Male , Mice , Mice, Mutant Strains , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neurogenesis/drug effects , Pregnancy , Presenilin-1/metabolism
3.
Epilepsia ; 56(3): 422-30, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25656163

ABSTRACT

OBJECTIVE: Mutations of ATP1A3 have been associated with rapid onset dystonia-parkinsonism and more recently with alternating hemiplegia of childhood. Here we report one child with catastrophic early life epilepsy and shortened survival, and another with epilepsy, episodic prolonged apnea, postnatal microcephaly, and severe developmental disability. Novel heterozygous mutations (p.Gly358Val and p.Ile363Asn) were identified in ATP1A3 in these children. METHODS: Subjects underwent next-generation sequencing under a research protocol. Clinical data were collected retrospectively. The biochemical effects of the mutations on ATP1A3 protein function were investigated. Postmortem neuropathologic specimens from control and affected subjects were studied. RESULTS: The mutations localized to the P domain of the Na,K-ATPase α3 protein, and resulted in significant reduction of Na,K-ATPase activity in vitro. We demonstrate in both control human brain tissue and that from the subject with the p.Gly358Val mutation that ATP1A3 immunofluorescence is prominently associated with interneurons in the cortex, which may provide some insight into the pathogenesis of the disease. SIGNIFICANCE: The findings indicate these mutations cause severe phenotypes of ATP1A3-related disorder spectrum that include catastrophic early life epilepsy, episodic apnea, and postnatal microcephaly.


Subject(s)
Catastrophic Illness , Epilepsy/genetics , Epilepsy/psychology , Mutation/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Brain/metabolism , Brain/pathology , Child, Preschool , DNA Mutational Analysis , Electroencephalography , Enzyme Inhibitors/pharmacology , Epilepsy/complications , Epilepsy/pathology , Female , Glutamate Decarboxylase/metabolism , HEK293 Cells , Humans , Infant , Male , Models, Molecular , Nervous System Diseases/etiology , Ouabain/pharmacology , Transfection
4.
Free Radic Biol Med ; 65: 563-572, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23816524

ABSTRACT

Glutathionylation of the Na(+)-K(+) pump's ß1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific ß-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. ß1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of ß1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased ß1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's ß1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an important protective role in the vasculature under conditions of oxidative stress.


Subject(s)
Angiotensin II/metabolism , Muscle, Smooth, Vascular/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Arteries , Fluorescent Antibody Technique , Glutathione/metabolism , Humans , Immunoblotting , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Muscle Tonus , Oxidation-Reduction , Protein Subunits/metabolism , Rabbits
5.
J Biol Chem ; 288(10): 7077-85, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23344951

ABSTRACT

Restoration of the functional potency of pancreatic islets either through enhanced proliferation (hyperplasia) or increase in size (hypertrophy) of beta cells is a major objective for intervention in diabetes. We have obtained experimental evidence that global knock-out of a small, single-span regulatory subunit of Na,K-ATPase, FXYD2, alters glucose control. Adult Fxyd2(-/-) mice showed significantly lower blood glucose levels, no signs of peripheral insulin resistance, and improved glucose tolerance compared with their littermate controls. Strikingly, there was a substantial hyperplasia in pancreatic beta cells from the Fxyd2(-/-) mice compared with the wild type littermates, compatible with an observed increase in the level of circulating insulin. No changes were seen in the exocrine compartment of the pancreas, and the mice had only a mild, well-adapted renal phenotype. Morphometric analysis revealed an increase in beta cell mass in KO compared with WT mice. This appears to explain a phenotype of hyperinsulinemia. By RT-PCR, Western blot, and immunocytochemistry we showed the FXYD2b splice variant in pancreatic beta cells from wild type mice. Phosphorylation of Akt kinase was significantly higher under basal conditions in freshly isolated islets from Fxyd2(-/-) mice compared with their WT littermates. Inducible expression of FXYD2 in INS 832/13 cells produced a reduction in the phosphorylation level of Akt, and phosphorylation was restored in parallel with degradation of FXYD2. Thus we suggest that in pancreatic beta cells FXYD2 plays a role in Akt signaling pathways associated with cell growth and proliferation.


Subject(s)
Blood Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/blood , Sodium-Potassium-Exchanging ATPase/metabolism , Alternative Splicing , Animals , Blotting, Western , Cell Line, Tumor , Female , Gene Expression Regulation, Enzymologic , Glucose Tolerance Test , Hyperplasia , Immunohistochemistry , Insulin-Secreting Cells/pathology , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sodium-Potassium-Exchanging ATPase/genetics
6.
Hippocampus ; 21(6): 584-608, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20232399

ABSTRACT

Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer-term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12-17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE-induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post-SE. Repeated WM experience prevented SE-induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long-term cognitive and neuropathological effects of KA-induced SE, and that rehabilitative cognitive enrichment may be partially beneficial.


Subject(s)
Choline/administration & dosage , Hippocampus , Kainic Acid/adverse effects , Prenatal Nutritional Physiological Phenomena/physiology , Status Epilepticus , Animals , Female , Glial Fibrillary Acidic Protein/metabolism , Glutamate Decarboxylase/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/pathology , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/physiology , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley , Retention, Psychology/drug effects , Space Perception/drug effects , Space Perception/physiology , Status Epilepticus/chemically induced , Status Epilepticus/diet therapy , Status Epilepticus/pathology , Status Epilepticus/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...