Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 651
Filter
2.
BMC Psychiatry ; 24(1): 414, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834981

ABSTRACT

BACKGROUND: Fostering empathy has been continuously emphasized in the global medical education. Empathy is crucial to enhance patient-physician relationships, and is associated with medical students' academic and clinical performance. However, empathy level of medical students in China and related influencing factors are not clear. METHODS: This was a cross-sectional study among medical students in 11 universities. We used the Jefferson Scale of Empathy Student-version of Chinese version to measure empathy level of medical students. Factors associated with empathy were identified by the univariate and multivariate logistic regression analyses. Based on the variables identified above, the nomogram was established to predict high empathy probability of medical students. Receiver operating characteristic curve, calibration plot and decision curve analysis were used to evaluate the discrimination, calibration and educational utility of the model. RESULTS: We received 10,901 samples, but a total of 10,576 samples could be used for further analysis (effective response rate of 97.02%). The mean empathy score of undergraduate medical students was 67.38 (standard deviation = 9.39). Six variables including gender, university category, only child or not, self-perception doctor-patient relationship in hospitals, interest of medicine, Kolb learning style showed statistical significance with empathy of medical students (P < 0.05). Then, the nomogram was established based on six variables. The validation suggested the nomogram model was well calibrated and had good utility in education, as well as area under the curve of model prediction was 0.65. CONCLUSIONS: We identify factors influencing empathy of undergraduate medical students. Moreover, increasing manifest and hidden curriculums on cultivating empathy of medical students may be needed among medical universities or schools in China.


Subject(s)
Education, Medical, Undergraduate , Empathy , Physician-Patient Relations , Students, Medical , Humans , Students, Medical/psychology , Students, Medical/statistics & numerical data , Cross-Sectional Studies , Male , Female , China , Young Adult , Adult , Nomograms
3.
Nat Commun ; 15(1): 4336, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773100

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.


Subject(s)
Cell-Free System , Protein Processing, Post-Translational , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Biosynthetic Pathways/genetics , Multigene Family , Biocatalysis
4.
BMC Med Genomics ; 17(1): 121, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702698

ABSTRACT

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS: RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS: In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS: We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , Humans , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Male , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling , Middle Aged , Signal Transduction/genetics
6.
Digit Health ; 10: 20552076241249661, 2024.
Article in English | MEDLINE | ID: mdl-38698834

ABSTRACT

Artificial intelligence is steadily permeating various sectors, including healthcare. This research specifically addresses lung cancer, the world's deadliest disease with the highest mortality rate. Two primary factors contribute to its onset: genetic predisposition and environmental factors, such as smoking and exposure to pollutants. Recognizing the need for more effective diagnosis techniques, our study embarked on devising a machine learning strategy tailored to boost precision in lung cancer detection. Our aim was to devise a diagnostic method that is both less invasive and cost-effective. To this end, we proposed four methods, benchmarking them against prevalent techniques using a universally recognized dataset from Kaggle. Among our methods, one emerged as particularly promising, outperforming the competition in accuracy, precision and sensitivity. This method utilized hyperparameter tuning, focusing on the Gamma and C parameters, which were set at a value of 10. These parameters influence kernel width and regularization strength, respectively. As a result, we achieved an accuracy of 99.16%, a precision of 98% and a sensitivity rate of 100%. In conclusion, our enhanced prediction mechanism has proven to surpass traditional and contemporary strategies in lung cancer detection.

7.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Article in English | MEDLINE | ID: mdl-38707615

ABSTRACT

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Subject(s)
Biological Availability , Nanotechnology , Solubility , Humans , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Animals
8.
J Tradit Complement Med ; 14(3): 312-320, 2024 May.
Article in English | MEDLINE | ID: mdl-38707926

ABSTRACT

Background: Diabetic kidney disease (DKD) is one of diabetic complications, which has become the leading cause of end-stage kidney disease. In addition to angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker(ACEI/ARB) and sodium-glucose cotransporter-2 inhibitor (SGLT2i), traditional Chinese medicine (TCM) is an effective alternative treatment for DKD. In this study, the effect of Qufeng Tongluo (QFTL) decoction in decreasing proteinuria has been observed and its mechanism has been explored based on autophagy regulation in podocyte. Methods: In vivo study, db/db mice were used as diabetes model and db/m mice as blank control. Db/db mice were treated with QFTL decoction, rapamycin, QFTL + 3-Methyladenine (3-MA), trehalose, chloroquine (CQ) and QFTL + CQ. Mice urinary albumin/creatinine (UACR), nephrin and autophagy related proteins (LC3 and p62) in kidney tissue were detected after intervention of 9 weeks. Transcriptomics was operated with the kidney tissue from model group and QFTL group. In vitro study, mouse podocyte clone-5 (MPC-5) cells were stimulated with hyperglycemic media (30 mmol/L glucose) or cultured with normal media. High-glucose-stimulated MPC-5 cells were treated with QFTL freeze-drying powder, rapamycin, CQ, trehalose, QFTL+3-MA and QFTL + CQ. Cytoskeletal actin, nephrin, ATG-5, ATG-7, Beclin-1, cathepsin L and cathepsin B were assessed. mRFP-GFP-LC3 was established by stubRFP-sensGFP-LC3 lentivirus transfection. Results: QFTL decoction decreased the UACR and increased the nephrin level in kidney tissue and high-glucose-stimulated podocytes. Autophagy inhibitors, including 3-MA and chloroquine blocked the effects of QFTL decoction. Further study showed that QFTL decoction increased the LC3 expression and relieved p62 accumulation in podocytes of db/db mice. In high-glucose-stimulated MPC-5 cells, QFTL decoction rescued the inhibited LC3 and promoted the expression of ATG-5, ATG-7, and Beclin-1, while had no effect on the activity of cathepsin L and cathepsin B. Results of transcriptomics also showed that 51 autophagy related genes were regulated by QFTL decoction, including the genes of ATG10, SCOC, ATG4C, AMPK catalytic subunit, PI3K catalytic subunit, ATG3 and DRAM2. Conclusion: QFTL decoction decreased proteinuria and protected podocytes in db/db mice by regulating autophagy.

9.
Genome Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744529

ABSTRACT

While DNA N6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has generated great interest recently. Biochemical and genetic evidence supports that AMT1, a MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, 6mA transmission mechanism remains to be elucidated. Taking advantage of Single Molecule Real-Time Circular Consensus Sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, while de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with striking similarity to 5-methyl cytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.

10.
Chemistry ; : e202401449, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749918

ABSTRACT

Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.

11.
Acta Pharmacol Sin ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750075

ABSTRACT

Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8+ T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.

12.
Article in English | MEDLINE | ID: mdl-38753235

ABSTRACT

Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4-·)-based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4-· and O2-··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3-9) and good efficiency in the presence of co-existing components (HCO3-, NO3-, Cl-, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs.

13.
ACS Synth Biol ; 13(5): 1434-1441, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695987

ABSTRACT

Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 µM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.


Subject(s)
Biocatalysis , Cell-Free System , Styrene/metabolism , Styrene/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism
14.
Chin J Cancer Res ; 36(2): 226-232, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751434

ABSTRACT

Colorectal cancer has a high incidence and mortality rate in China, with the majority of cases being middle and low rectal cancer. Surgical intervention is currently the main treatment modality for locally advanced rectal cancer, with the common goal of improving oncological outcomes while preserving function. The controversy regarding the circumferential resection margin distance in rectal cancer surgery has been resolved. With the promotion of neoadjuvant therapy concepts and advancements in technology, treatment strategies have become more diverse. Following tumor downstaging, there is an increasing trend towards extending the safe distance of distal rectal margin. This provides more opportunities for patients with low rectal cancer to preserve their anal function. However, there is currently no consensus on the specific distance of distal resection margin.

15.
Environ Sci Technol ; 58(19): 8299-8312, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690832

ABSTRACT

Accurate estimates of fossil fuel CO2 (FFCO2) emissions are of great importance for climate prediction and mitigation regulations but remain a significant challenge for accounting methods relying on economic statistics and emission factors. In this study, we employed a regional data assimilation framework to assimilate in situ NO2 observations, allowing us to combine observation-constrained NOx emissions coemitted with FFCO2 and grid-specific CO2-to-NOx emission ratios to infer the daily FFCO2 emissions over China. The estimated national total for 2016 was 11.4 PgCO2·yr-1, with an uncertainty (1σ) of 1.5 PgCO2·yr-1 that accounted for errors associated with atmospheric transport, inversion framework parameters, and CO2-to-NOx emission ratios. Our findings indicated that widely used "bottom-up" emission inventories generally ignore numerous activity level statistics of FFCO2 related to energy industries and power plants in western China, whereas the inventories are significantly overestimated in developed regions and key urban areas owing to exaggerated emission factors and inexact spatial disaggregation. The optimized FFCO2 estimate exhibited more distinct seasonality with a significant increase in emissions in winter. These findings advance our understanding of the spatiotemporal regime of FFCO2 emissions in China.


Subject(s)
Carbon Dioxide , Environmental Monitoring , Fossil Fuels , Nitrogen Dioxide , Carbon Dioxide/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Seasons
16.
Front Oncol ; 14: 1355551, 2024.
Article in English | MEDLINE | ID: mdl-38800374

ABSTRACT

Background: Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods: We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results: 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion: Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.

17.
Food Chem ; 453: 139697, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788652

ABSTRACT

Spiropidion developed by Syngenta shows high insecticidal and acaricidal activity against a wide range of sucking pests. In this study, according to the structure of spiropidion, two haptens were synthesized by introducing carboxyl groups from the ester group. After cell fusion, a monoclonal antibody (mAb 8B5) of spiropidion was obtained. The IC50 of the established heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was 7.36 ng/mL, and its working range was 1.75-34.92 ng/mL. The average recoveries were 76.05-124.78% in the Yangtze River and citrus samples. Moreover, the ic-ELISA results of 15 citrus samples agreed well with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Overall, the established ic-ELISA could be applied for the spiropidion residue monitor in food and agricultural samples.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Haptens , Pesticide Residues , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Haptens/chemistry , Haptens/immunology , Animals , Pesticide Residues/analysis , Pesticide Residues/chemistry , Tandem Mass Spectrometry , Food Contamination/analysis , Mice, Inbred BALB C , Mice , Citrus/chemistry , Insecticides/chemistry , Insecticides/analysis
18.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38713825

ABSTRACT

Whether, to what extent, and how the axons in the central nervous system (CNS) can withstand sudden mechanical impacts remain unclear. By using a microfluidic device to apply controlled transverse mechanical stress to axons, we determined the stress levels that most axons can withstand and explored their instant responses at nanoscale resolution. We found mild stress triggers a highly reversible, rapid axon beading response, driven by actomyosin-II-dependent dynamic diameter modulations. This mechanism contributes to hindering the long-range spread of stress-induced Ca2+ elevations into non-stressed neuronal regions. Through pharmacological and molecular manipulations in vitro, we found that actomyosin-II inactivation diminishes the reversible beading process, fostering progressive Ca2+ spreading and thereby increasing acute axonal degeneration in stressed axons. Conversely, upregulating actomyosin-II activity prevents the progression of initial injury, protecting stressed axons from acute degeneration both in vitro and in vivo. Our study unveils the periodic actomyosin-II in axon shafts cortex as a novel protective mechanism, shielding neurons from detrimental effects caused by mechanical stress.


Subject(s)
Actomyosin , Axons , Stress, Mechanical , Animals , Mice , Actomyosin/metabolism , Axons/metabolism , Axons/pathology , Calcium/metabolism , Cells, Cultured , Nerve Degeneration/pathology , Rats
19.
J Transl Med ; 22(1): 438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720336

ABSTRACT

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Subject(s)
Deep Learning , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Treatment Outcome , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Retrospective Studies , ROC Curve , Adult
20.
Sci Rep ; 14(1): 11627, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773279

ABSTRACT

A new idea to alleviate environmental pollution is the development of low-cost adsorbents using natural minerals and fishery wastes to treat high concentrations of heavy metal pollutants in acid mine drainage (AMD). Adsorbent morphology, adsorptive and regenerative capacity, and application potential are limiting factors for their large-scale use. Oyster shells capable of releasing alkalinity were loaded on the surface of lignite to develop two composite adsorbents with different morphologies (powdery and globular) for the treatment of AMD containing Pb(II) and Cd(II). The results show that the ability of the adsorbent to treat AMD is closely related to its morphologies. The pseudo-second-order kinetic model and the Langmuir model are suitable to describe the adsorption process of OS-M(P), and the maximum adsorption saturation capacities of Pb(II) and Cd(II) are 332.6219 mg/g and 318.9854 mg/g, respectively. The pseudo-second-order kinetic model and the Freundlich model are suitable to describe the adsorption process of OS-M(G). A synergistic result of electrostatic adsorption, neutralization precipitation, ion exchange and complex reaction is achieved in the removal of Pb(II) and Cd(II) by two morphologies of adsorbents. The regeneration times (5 times) and recovery rate (75.75%) of OS-M(G) are higher than those of OS-M(P) (3 times) and recovery rate (20%). The ability of OS-M(G) to treat actual AMD wastewater is still better than that of OS-M(P). OS-M(G) can be used as a promising environmentally friendly adsorbent for the long-term remediation of AMD. This study provides a comprehensive picture of resource management and reuse opportunities for natural mineral and fishery wastes.


Subject(s)
Animal Shells , Cadmium , Lead , Mining , Ostreidae , Water Pollutants, Chemical , Lead/chemistry , Cadmium/chemistry , Adsorption , Animals , Ostreidae/chemistry , Animal Shells/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...