Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Article in English | MEDLINE | ID: mdl-38758154

ABSTRACT

Objective: This study aims to investigate the influencing factors of transient hypoparathyroidism following thyroidectomy and assess the effects of rehabilitation treatment, focusing on enhancing management and outcomes for patients. Methods: In this retrospective study, 90 patients who underwent thyroidectomy in our hospital from February 2021 to February 2023 were collected. According to the postoperative level of parathyroid hormone (PTH), the patients were divided into normal group [(no hypoparathyroidism, ≥ 0.27 pmol/l), n=65] and hypoparathyroidism (transient hypoparathyroidism, < 0.27 pmol/l, n=25). We retrospectively analyzed 90 thyroidectomy patients, categorizing them into normal and hypoparathyroidism groups based on postoperative parathyroid hormone levels. Logistic regression and ROC curve analysis were employed to evaluate the factors influencing transient hypoparathyroidism and predict recovery.Clinical data of the two groups of patients were collected, and the relationship between postoperative 1dPTH (Parathyroid hormone levels on the first postoperative day) level and recovery effect was analyzed. Logistic regression was used to analyze the influencing factors of temporary hypoparathyroidism after thyroidectomy, and a ROC curve was used to predict the efficacy of the 1dPTH level on postoperative PTH recovery time. Results: There were no differences in gender, hypertension, diabetes and hyperlipidemia between the two groups (P > .05). The age and tumor diameter of the normal group were lower than those of the hypoactive group, and the proportion of patients with thyroiditis and malignant tumors, as well as patients undergoing total thyroidectomy and removal of tracheoesophageal lymph nodes in the normal group were significantly lower than those in the hypoactive group. The above differences were statistically significant (P < .05). Logistic regression analysis showed that older age, malignant tumor, larger tumor diameter, total thyroidectomy, and tracheoesophageal lymph node dissection were independent risk factors for transient hypoparathyroidism after thyroidectomy (P < .05). The level of PTH on the 1st day after surgery in patients with recovery time ≤ 1 month was higher than that in patients with recovery time > 1 month, and the difference was statistically significant (P < .05). ROC curve showed that the PTH level on the 1st day after surgery had a certain predictive value on PTH recovery time, and the AUC value (area under the curve) was 0.873 (P < .05). These findings suggest that patients with older age, malignancy, larger tumor diameter, total thyroidectomy, and removal of tracheoesophageal lymph nodes are more likely to develop transient hypoparathyroidism after thyroidectomy. This understanding is crucial for the management of postoperative patients, and physicians may need to pay special attention to these high-risk patients and implement appropriate interventions to reduce the occurrence of hypoparathyroidism. Significant factors contributing to transient hypoparathyroidism included older age, malignant tumors, larger tumor diameter, total thyroidectomy, and tracheoesophageal lymph node dissection. These findings, backed by statistical significance, underline the clinical relevance of these risk factors in postoperative management. Conclusion: The study identifies key risk factors for transient hypoparathyroidism post-thyroidectomy, emphasizing the need for tailored postoperative care. The predictive value of immediate postoperative PTH levels could guide clinical management to mitigate hypoparathyroidism risks.

2.
Langmuir ; 40(19): 9999-10007, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696767

ABSTRACT

With a large theoretical capacity and high energy density, aluminum-air batteries are a promising energy storage device. However, the rigid structure and liquid electrolyte of a traditional aluminum-air battery limit its application potential in the field of flexible electronics, and the irreversible corrosion of its anode greatly reduces the battery life. To solve the above problems, a PVA/KC/KOH (2 M) composite gel polymer electrolyte (GPE) with a three-dimensional dual-network structure consisting of polyvinyl alcohol (PVA), kappa-carrageenan (KC), and potassium hydroxide was prepared in this paper by a simple two-step method and applied in aluminum-air batteries. At room temperature, the ionic conductivity of the PVA/KC/KOH (2 M) composite GPE was found to be up to 6.50 × 10-3 S cm-1. By utilizing this composite GPE, a single flexible aluminum-air battery was assembled and achieved a maximum discharge voltage of 1.2 V at 5 mA cm-2, with discharge time exceeding 3 h. Moreover, the single flexible aluminum-air battery maintains good electrochemical performance under various deformation modes, and the output voltage of the battery remains at about 99% after 300 cycles. The construction of flexible aluminum-air batteries based on a three-dimensional dual-network PVA/KC/KOH composite GPE provides excellent safety and high-multiplication capabilities for aluminum-air batteries, making them potential candidates for various flexible device applications.

3.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557048

ABSTRACT

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

4.
Article in English | MEDLINE | ID: mdl-38043009

ABSTRACT

OBJECTIVE: This article aims to clarify pitfalls and find strategies for the detecting and diagnosing hyperechoic liver metastases (LMs) using Sonazoid-contrast enhanced ultrasonography (Sonazoid-CEUS). METHODS: This study was a prospective self-controlled study. Patients with hepatic lesions suspected as LMs or benign lesions were included in the study. Baseline ultrasonography (BUS) and Sonazoid-CEUS were performed on every patient. Characteristics of LMs and benign nodules were compared by chi-square test and fisher test. Factors influenced the CEUS were demonstrated by univariate analysis and multivariate logistic regression analysis. RESULTS: 54 patients were included in this study. CEUS found additional 75 LMs from 19 patients in Kupffer phase. We found hyperechoic focal liver lesions and deep seated in liver are main confounding factors in CEUS diagnosis. Sensitivity would be improved from 16.67% to 78.57%, negative predictive value (NPV) would be improved from 28.57% to 76.92% and accuracy would be improved from 37.5% to 87.50% when using rapid "wash-in" and "wash-out" as main diagnostic criteria. CONCLUSIONS: Hyperechoic LMs especially deeply seated ones are usually not shown typical "black hole" sign in Kupffer phase. Quickly "wash-in and wash out" shows high accuracy in diagnosing malignant nodules. We highly recommend CEUS as a routing exam to detect and diagnose LMs.

5.
Cells ; 12(16)2023 08 10.
Article in English | MEDLINE | ID: mdl-37626846

ABSTRACT

RECQ5, a member of the conserved RECQ helicase family, is the sole human RECQ homolog that has not been linked to a hereditary developmental syndrome. Nonetheless, dysregulation of RECQ5 has emerged as a significant clinical concern, being linked to cancer predisposition, cardiovascular disease, and inflammation. In cells, RECQ5 assumes a crucial role in the regulation of DNA repair pathways, particularly in the repair of DNA double-strand breaks and inter-strand DNA crosslinks. Moreover, RECQ5 exhibits a capacity to modulate gene expression by interacting with transcription machineries and their co-regulatory proteins, thus safeguarding against transcription-induced DNA damage. This review aims to provide an overview of the multifaceted functions of RECQ5 and its implications in maintaining genomic stability. We will discuss the potential effects of clinical variants of RECQ5 on its cellular functions and their underlying mechanisms in the pathogenesis of cancer and cardiovascular disease. We will review the impact of RECQ5 variants in the field of pharmacogenomics, specifically their influence on drug responses, which may pave the way for novel therapeutic interventions targeting RECQ5 in human diseases.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , DNA , RecQ Helicases/genetics , DNA Breaks, Double-Stranded , DNA Damage
6.
Cell Chem Biol ; 30(10): 1235-1247.e6, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37531956

ABSTRACT

Targeting transcription replication conflicts, a major source of endogenous DNA double-stranded breaks and genomic instability could have important anticancer therapeutic implications. Proliferating cell nuclear antigen (PCNA) is critical to DNA replication and repair processes. Through a rational drug design approach, we identified a small molecule PCNA inhibitor, AOH1996, which selectively kills cancer cells. AOH1996 enhances the interaction between PCNA and the largest subunit of RNA polymerase II, RPB1, and dissociates PCNA from actively transcribed chromatin regions, while inducing DNA double-stranded breaks in a transcription-dependent manner. Attenuation of RPB1 interaction with PCNA, by a point mutation in RPB1's PCNA-binding region, confers resistance to AOH1996. Orally administrable and metabolically stable, AOH1996 suppresses tumor growth as a monotherapy or as a combination treatment but causes no discernable side effects. Inhibitors of transcription replication conflict resolution may provide a new and unique therapeutic avenue for exploiting this cancer-selective vulnerability.


Subject(s)
Chromatin , Neoplasms , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Neoplasms/drug therapy , DNA , DNA Replication
7.
Nano Lett ; 23(16): 7350-7357, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37580044

ABSTRACT

The mechanical properties of soft tissues can often be strongly correlated with the progression of various diseases, such as myocardial infarction (MI). However, the dynamic mechanical properties of cardiac tissues during MI progression remain poorly understood. Herein, we investigate the rheological responses of cardiac tissues at different stages of MI (i.e., early-stage, mid-stage, and late-stage) with atomic force microscopy-based microrheology. Surprisingly, we discover that all cardiac tissues exhibit a universal two-stage power-law rheological behavior at different time scales. The experimentally found power-law exponents can capture an inconspicuous initial rheological change, making them particularly suitable as markers for early-stage MI diagnosis. We further develop a self-similar hierarchical model to characterize the progressive mechanical changes from subcellular to tissue scales. The theoretically calculated mechanical indexes are found to markedly vary among different stages of MI. These new mechanical markers are applicable for tracking the subtle changes of cardiac tissues during MI progression.


Subject(s)
Myocardial Infarction , Humans , Rheology , Myocardial Infarction/diagnosis , Microscopy, Atomic Force , Viscosity
8.
Adv Sci (Weinh) ; 10(29): e2303058, 2023 10.
Article in English | MEDLINE | ID: mdl-37596721

ABSTRACT

Structural biomimicry is an intelligent approach for developing lightweight, strong, and tough materials (LSTMs). Current fabrication technologies, such as 3D printing and two-photon lithography often face challenges in constructing complex interlaced structures, such as the sinusoidal crossed herringbone structure that contributes to the ultrahigh strength and fracture toughness of the dactyl club of peacock mantis shrimps. Herein, bioinspired LSTMs with laminated or herringbone structures is reported, by combining textile processing and silk fiber "welding" techniques. The resulting biomimetic silk LSTMs (BS-LSTMs) exhibit a remarkable combination of lightweight with a density of 0.6-0.9 g cm-3 , while also being 1.5 times stronger and 16 times more durable than animal horns. These findings demonstrate that BS-LSTMs are among the toughest natural materials made from silk proteins. Finite element simulations further reveal that the fortification and hardening of BS-LSTMs arise primarily from the hierarchical organization of silk fibers and mechanically transferable meso-interfaces. This study highlights the rational, cost-effective, controllable mesostructure, and transferable strategy of integrating textile processing and fiber "welding" techniques for the fabrication of BS-LSTMs with advantageous structural and mechanical properties. These findings have significant implications for a wide range of applications in biomedicine, mechanical engineering, intelligent textiles, aerospace industries, and beyond.


Subject(s)
Biomimetics , Silk , Animals , Silk/chemistry , Biomimetics/methods , Textiles
9.
Sci Adv ; 9(33): eadi3979, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37585531

ABSTRACT

Methodologies based on intravascular imaging have revolutionized the diagnosis and treatment of endovascular diseases. However, current methods are limited in detecting, i.e., visualizing and crossing, complicated occluded vessels. Therefore, we propose a miniature soft tool comprising a magnet-assisted active deformation segment (ADS) and a fluid drag-driven segment (FDS) to visualize and cross the occlusions with various morphologies. First, via soft-bodied deformation and interaction, the ADS could visualize the structure details of partial occlusions with features as small as 0.5 millimeters. Then, by leveraging the fluidic drag from the pulsatile flow, the FDS could automatically detect an entry point selectively from severe occlusions with complicated microchannels whose diameters are down to 0.2 millimeters. The functions have been validated in both biologically relevant phantoms and organs ex vivo. This soft tool could help enhance the efficacy of minimally invasive medicine for the diagnosis and treatment of occlusions in various circulatory systems.

10.
J Chem Phys ; 159(2)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37428058

ABSTRACT

Graphene oxide (GO) sheets are widely used as building blocks in flexible electronic devices, structural materials, and energy storage technology owing to physicochemical flexibility and remarkable mechanical properties. GO exists as lamellar structures in these applications and, thus, it urges to enhance interface interaction to prevent interfacial failure. This study explores the adhesion of GO with and without intercalated water utilizing steered molecular dynamics (SMD) simulations. We find the interfacial adhesion energy (γ) depends on the synergistic effect of the types of functional groups, the degree of oxidation (c), and water content (wt). The intercalated monolayer water confined within GO flakes can improve the γ by more than 50% whereas the interlayer spacing is enlarged. The enhancement of adhesion is from the cooperative hydrogen bonding bridges between confined water and functional group on GO. Furthermore, the optimal water content wt = 20% and oxidation degree c = 20% are obtained. Our findings provide an experimentally available way to improve interlayer adhesion through molecular intercalation, which opens the possibility of high-performance laminate nanomaterial-based films for versatile applications.

11.
Nano Lett ; 23(8): 3352-3361, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37052245

ABSTRACT

Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.

12.
Exp Cell Res ; 427(2): 113600, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37062521

ABSTRACT

Berberine (BBR) is an effective drug against liver fibrosis (LF). Autophagy is involved in the pathogenesis of LF; however, the mechanism linking BBR to autophagy in LF remains unresolved. To explore the underlying mechanism, we assessed the effects of BBR on autophagy and apoptosis of activated hepatic stellate cells (HSCs) in vitro and in a murine model of fibrosis. The decreased expression of the autophagy activation marker ATG5, autophagosome formation, and autophagy flux in the HSC model confirmed that BBR inhibited autophagy in activated HSCs and in mice with liver fibrosis. Moreover, ATG5 was necessary for inducing autophagy and HSC activation. BBR suppressed ATG5 expression by upregulating miR-30a-5p expression, which affected the stability of ATG5 mRNA by binding to its 3'-untranslated region, an effect that was attenuated by treatment with a miR-30a-5p inhibitor. BBR also markedly induced HSC apoptosis, as indicated by the upregulated expression of the pro-apoptosis markers p53, BAX, and cleaved PARP and the downregulated expression of the anti-apoptosis marker BCL-2, effects that were reversed by ATG5 overexpression. In vivo, BBR improved mouse LF by decreasing collagen deposition, inflammatory cell infiltration, and expression of fibrosis markers hydroxyproline, α-smooth muscle actin, and collagen type 1-A1 and the autophagy marker LC3. BBR had a protective effect on mouse fibrotic livers and reduced serum aspartate aminotransferase and alanine aminotransferase levels. Collectively, these results reveal a novel mechanism of BBR-induced autophagy inhibition triggering apoptosis in HSCs, providing a reliable experimental and theoretical basis for developing BBR-based candidate drugs for LF.


Subject(s)
Berberine , MicroRNAs , Mice , Animals , Berberine/pharmacology , Berberine/therapeutic use , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/metabolism , Collagen/metabolism , Autophagy/genetics , MicroRNAs/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
13.
ACS Omega ; 8(8): 8092-8100, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873023

ABSTRACT

The zinc-air batteries (ZABs) are regarded as the most potential energy storage device for the next generation. However, the zinc anode passivation and hydrogen evolution reaction (HER) in alkaline electrolyte situations inhibit the zinc plate working efficiency, which needs to improve zinc solvation and better electrolyte strategy. In this work, we propose a design of new electrolyte by using a polydentate ligand to stabilize the zinc ion divorced from the zinc anode. The formation of the passivation film is suppressed greatly, compared to the traditional electrolyte. The characterization result presents that the quantity of the passivation film is reduced to nearly 33% of pure KOH result. Besides, triethanolamine (TEA) as an anionic surfactant inhibits the HER effect to improve the efficiency of the zinc anode. The discharging and recycling test indicates that the specific capacity of the battery with the effect of TEA is improved to nearly 85 mA h/cm2 compared to 0.21 mA h/cm2 in 0.5 mol/L KOH, which is 350 times the result of the blank group. The electrochemical analysis results also indicate that zinc anode self-corrosion is palliated. With density function theory, calculation results prove the new complex existence and structure in electrolytes by the data of the molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital). A new theory of multi-dentate ligand inhibiting passivation is elicited and provides a new direction for ZABs' electrolyte design.

14.
Nat Commun ; 14(1): 1233, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871012

ABSTRACT

Deletion of the conserved C-terminus of the Rothmund-Thomson syndrome helicase RECQ4 is highly tumorigenic. However, while the RECQ4 N-terminus is known to facilitate DNA replication initiation, the function of its C-terminus remains unclear. Using an unbiased proteomic approach, we identify an interaction between the RECQ4 N-terminus and the anaphase-promoting complex/cyclosome (APC/C) on human chromatin. We further show that this interaction stabilizes APC/C co-activator CDH1 and enhances APC/C-dependent degradation of the replication inhibitor Geminin, allowing replication factors to accumulate on chromatin. In contrast, the function is blocked by the RECQ4 C-terminus, which binds to protein inhibitors of APC/C. A cancer-prone, C-terminal-deleted RECQ4 mutation increases origin firing frequency, accelerates G1/S transition, and supports abnormally high DNA content. Our study reveals a role of the human RECQ4 C-terminus in antagonizing its N-terminus, thereby suppressing replication initiation, and this suppression is impaired by oncogenic mutations.


Subject(s)
DNA Replication , Proteomics , Humans , Anaphase-Promoting Complex-Cyclosome , Chromatin , Peptide Initiation Factors
15.
ACS Nano ; 17(5): 4886-4895, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36802511

ABSTRACT

Aggregation of two-dimensional (2D) nanosheet fillers in a polymer matrix is a prevalent problem when the filler loading is high, leading to degradation of physical and mechanical properties of the composite. To avoid aggregation, a low-weight fraction of the 2D material (<5 wt %) is usually used to fabricate the composite, limiting performance improvement. Here, we develop a mechanical interlocking strategy where well-dispersed high filling content (up to 20 wt %) of boron nitride nanosheets (BNNSs) can be incorporated into a polytetrafluoroethylene (PTFE) matrix, resulting in a malleable, easy-to-process and reusable BNNS/PTFE composite dough. Importantly, the well-dispersed BNNS fillers can be rearranged into a highly oriented direction due to the malleable nature of the dough. The resultant composite film has a high thermal conductivity (4408% increase), low dielectric constant/loss, and excellent mechanical properties (334%, 69%, 266%, and 302% increases for tensile modulus, strength, toughness, and elongation, respectively), making it suitable for thermal management applications in the high-frequency areas. The technique is useful for the large-scale production of other 2D material/polymer composites with a high filler content for different applications.

16.
Mater Horiz ; 10(2): 556-565, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36458453

ABSTRACT

A layered architecture endows structural materials like nacre and biomimetic ceramics with enhanced mechanical performance because it introduces multiple strengthening and toughening mechanisms. Yet present studies predominantly involve enhancing the alignment in planar lamellar structures, and the effects of the stacking curvature have largely remained unexplored. Here we find that ordered curved stacking bands in lamellar structures act as a new structural mechanism to simultaneously improve strength and toughness. Aligned curved bands increase interlayer frictional resistance to show a strengthening effect and suppress the crack propagation to show an extrinsic toughening effect. In prototypical graphene oxide films, rational regulation of the intervals and orientations of curved bands bring a maximum 162% improvement in strength and 183% improvement in toughness simultaneously. Our results reveal the hidden effects of the stacking curvature on the mechanical behaviors of lamellar materials, opening an extra design dimension to fabricate stronger and tougher structural materials.

17.
Cell Mol Biol (Noisy-le-grand) ; 69(14): 272-276, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38279419

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common endocrine malignant tumor and the metastasis of PTC often leads to unfavorable prognosis. Thus, the purpose of the current research was to mainly explore the role of miR-3653-3p in PTC progression. The expression level of miR-3653-3p in PTC was determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR), and Cell Counting Kit-8 (CCK-8) assay and colony formation assay were recruited to assess the ability of miR-3653-3p on cell proliferation. Next, transwell assay and Matrigel assay were involved to examine the ability of miR-3653-3p on cell migration and invasion. At last, Dual-Luciferase reporter assay and Western blotting were recruited to validate the down-stream target of miR-3653-3p. Results showed that miR-3653-3p was down-expressed in PTC, and upregulated miR-3653-3p inhibited cell proliferation, cell migration, and cell invasion in vitro. In addition, CRIPTO-1 was a downstream target of miR-3653-3p, and miR-3653-3p inhibited PTC progression via regulating CRIPTO-1. In sum, this research verifies that miR-3653-3p suppresses cell proliferation, migration, and invasion in PTC via regulating CRIPTO-1. These findings provide new insight into the underlying mechanism of PTC progression and may be useful in finding biomarkers and therapeutic targets of PTC.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
18.
Nanoscale ; 15(1): 313-320, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36484482

ABSTRACT

Artificial neural networks (ANNs) have strong learning and computing capabilities, and alleviate the problem of high power consumption of traditional von Neumann architectures, providing a solid basis for advanced image recognition, information processing, and low-power detection. Recently, a two-dimensional (2D) MoS2 field-effect transistor (FET) integrating a Zr-doped HfO2 (HZO) ferroelectric layer has shown potential for both logic and memory applications with low power consumption, which is promising for parallel processing of massive data. However, the long-term potentiation (LTP) characteristics of such devices are usually non-linear, which will affect the replacement of ANN weight values and degrade the ANN recognition rate. Here, we propose a dual-gate-controlled 2D MoS2 FET employing HZO gate stack with a crested symmetric structure to reduce power consumption. Improved nonlinearity of the LTP properties has been achieved through the electrical control of the dual gates. A recognition rate reaching 100% is obtained after 60 training epochs, and is 7.89% higher than that obtained from single-gate devices. Our proposed device structure and experimental results provide an attractive pathway towards high-efficiency data processing and image classification in the advanced artificial intelligence field.

19.
Proc Natl Acad Sci U S A ; 119(50): e2217542119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36490315

ABSTRACT

R-loops, or RNA:DNA hybrids, can induce DNA damage, which requires DNA repair factors including breast cancer type 1 susceptibility protein (BRCA1) to restore genomic integrity. To date, several pathogenic mutations have been found within the tandem BRCA1 carboxyl-terminal (BRCT) domains that mediate BRCA1 interactions with proteins and DNA in response to DNA damage. Here, we describe a nonrepair role of BRCA1 BRCT in suppressing ribosomal R-loops via two mechanisms. Through its RNA binding and annealing activities, BRCA1 BRCT facilitates the formation of double-stranded RNA between ribosomal RNA (rRNA) and antisense-rRNA (as-rRNA), hereby minimizing rRNA hybridization to ribosomal DNA to form R-loops. BRCA1 BRCT also promotes RNA polymerase I-dependent transcription of as-rRNA to enhance double-stranded rRNA (ds-rRNA) formation. In addition, BRCA1 BRCT-mediated as-rRNA production restricts rRNA maturation in unperturbed cells. Hence, impairing as-rRNA transcription and ds-rRNA formation due to BRCA1 BRCT deficiency deregulates rRNA processing and increases ribosomal R-loops and DNA breaks. Our results link ribosomal biogenesis dysfunction to BRCA1-associated genomic instability.


Subject(s)
BRCA1 Protein , RNA, Double-Stranded , BRCA1 Protein/metabolism , RNA, Antisense , DNA Repair , DNA Damage , DNA
20.
Front Genet ; 13: 1056405, 2022.
Article in English | MEDLINE | ID: mdl-36406124

ABSTRACT

Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...