Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
2.
Eur J Neurosci ; 58(9): 3932-3961, 2023 11.
Article in English | MEDLINE | ID: mdl-37831013

ABSTRACT

Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aß and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.


Subject(s)
Alzheimer Disease , Central Nervous System Diseases , Multiple Sclerosis , Neuromyelitis Optica , Parkinson Disease , Humans , Aquaporin 4/metabolism , Astrocytes/metabolism , Neuromyelitis Optica/metabolism , Multiple Sclerosis/metabolism , Parkinson Disease/metabolism , Alzheimer Disease/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2880-2889, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35718508

ABSTRACT

Hepatitis B virus(HBV) is the pathogen causing hepatitis B, which is characterized by strong infectivity, high incidence, and widespread prevalence and has seriously threatened human health and affected their quality of life. Anti-HBV drugs in western medicine mainly include nucleosides(nucleic acids) and interferons, among which nucleosides(nucleic acids) are used more often. Due to the easy development of drug resistance, their therapeutic effects are not remarkable. Interferons can easily cause serious adverse reactions such as liver injury. Anti-HBV drugs in traditional Chinese medicine mainly include single Chinese herbs(Artemisiae Scopariae Herba, Artemisiae Annuae Herba, Salviae Miltiorrhizae Radix et Rhizoma, etc.) and Chinese herbal compounds(Yinchenhao Decoction, Xiaochaihu Decoction, Tiaogan Huaxian Pills, etc.), whose chemical compositions and action targets have not been fully identified. The combined medication is better than single medication, in that the former can improve drug resistance, make up each other's deficiencies, reduce adverse reactions, and prolong the action time. This study reviewed the anti-HBV activities and mechanisms of western drugs, Chinese herbs, and combined medications, in order to provide reference for the development and research of new anti-HBV drugs.


Subject(s)
Drugs, Chinese Herbal , Nucleic Acids , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hepatitis B virus , Humans , Interferons , Medicine, Chinese Traditional , Nucleosides , Quality of Life
4.
J Ethnopharmacol ; 281: 114466, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34332064

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Korean red ginseng (KRG), a processed product of Panax ginseng C. A. Mey, show significant anti-depressive effect in clinic. However, its mechanism is still unclear. AIM OF THE STUDY: Gap junction intercellular communication (GJIC) dysfunction is a potential pathogenesis of depression. Therefore, this study's objective is to investigate whether the antidepressant effect of KRG is related to GJIC. MATERIALS AND METHODS: Rat were restraint 8 h every day for 28 consecutive days to prepare depression models, and meanwhile, rats were intragastrically administrated with normal saline, KRG solutions (25, 50 or 100 mg/kg) or fluoxetine (10 mg/kg) 1 h before stress. The behavioral performance was determined by forced swimming test, sucrose preference test and open field test. GJIC was determined by the Lucifer yellow (LY) diffusion distance in prelimb cortex (PLC). In addition, the level of Cx43, one of executors of GJIC, was tested by Western blot. To find out the protective effect of KRG against GJIC dysfunction directly, rats were intracranially injected with carbenoxolone (CBX, blocker of GJIC), and meanwhile normal saline, KRG (100 mg/kg) or fluoxetine (10 mg/kg) was administered daily. The behavioral performance of these rats was detected, and the LY localization injection PLC area was used to detect the gap junction function. RESULTS: Chronic resistant stress (CRS) induced depressive symptoms, as manifested by prolonged immobility time in forced swimming test and decreased sucrose consumption ratio. Administration of KRG alleviated these depressive symptoms significantly. GJIC determination showed that KRG improved the LY diffusion and increased Cx43 level in prefrontal cortex (PFC) significantly, indicated that GJIC dysfunction was alleviated by the treatment of KRG. However, the astrocytes number was also increased by the treatment of KRG, which maybe alleviate depression-like symptoms by increasing the number of astrocytes rather than improving GJIC. Injection of CBX produced depressive symptoms and GJIC dysfunction, as manifested by decreased sucrose consumption ratio and prolonged immobility time in forced swimming test, but no astrocytes number changes, KRG also reversed depressive symptoms and GJIC dysfunction, suggested that the improvement of depressive-like symptoms was improved by GJIC. CONCLUSIONS: KRG alleviate depressive disorder by improving astrocytic gap junction function.


Subject(s)
Astrocytes/drug effects , Depressive Disorder/drug therapy , Gap Junctions/drug effects , Gap Junctions/physiology , Panax/chemistry , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Astrocytes/physiology , Connexin 43/genetics , Connexin 43/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Rats , Rats, Wistar , Restraint, Physical
5.
J Ethnopharmacol ; 278: 114212, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34087399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer is a valuable medicinal herb and "alternative" remedy for the prevention and treatment of depression. Dysfunction of connexin43 (Cx43)-gap junction in astrocytes is predisposed to the precipitation of depression. Ginsenoside Rg1 (Rg1), the main bioactive constituent extracted from ginseng, is efficacious in the management of depression by upregulating the content of Cx43. Our previous results indicated that pretreatment with Rg1 significantly improved Cx43-gap junction in corticosterone (CORT)-treated astrocytes. However, the antidepressant mechanism underlying how Rg1 upregulates Cx43-gap junction in astrocytes hasn't been proposed. AIM OF THE STUDY: To dissect the mechanisms of Rg1 controlling Cx43 levels in primary astrocytes. METHODS: We examined the changes of the level of Cx43 mRNA, the degradation of Cx43, as well as the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43 followed by Rg1 prior to CORT in rat primary astrocytes isolated from prefrontal cortex and hippocampus. Furthermore, the recognized method of scrape loading/dye transfer was performed to detect Cx43-gap junctional function, an essencial indicator of the antidepressant effect. RESULTS: Pretreatment with Rg1 could reverse CORT-induced downregulation of Cx43 biosynthesis, acceleration of Cx43 degradation, and upregulation of two Cx43 degradation pathways in primary astrocytes. CONCLUSION: The findings in the present study provide the first evidence highlighting that Rg1 increases Cx43 protein levels through the upregulation of Cx43 mRNA and downregulation of Cx43 degradation, which may be attributed to the effect of Rg1 on the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43.


Subject(s)
Antidepressive Agents/pharmacology , Astrocytes/drug effects , Connexin 43/metabolism , Ginsenosides/pharmacology , Animals , Antidepressive Agents/isolation & purification , Cells, Cultured , Down-Regulation/drug effects , Ginsenosides/isolation & purification , Hippocampus/drug effects , Hippocampus/metabolism , Panax/chemistry , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
6.
CNS Neurosci Ther ; 25(9): 899-910, 2019 09.
Article in English | MEDLINE | ID: mdl-31334608

ABSTRACT

As an endogenous neuroprotectant agent, adenosine is extensively distributed and is particularly abundant in the central nervous system (CNS). Under physiological conditions, the concentration of adenosine is low intra- and extracellularly, but increases significantly in response to stress. The majority of adenosine functions are receptor-mediated, and primarily include the A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). Adenosine is currently widely used in the treatment of diseases of the CNS and the cardiovascular systems, and the mechanisms are related to the disease types, disease locations, and the adenosine receptors distribution in the CNS. For example, the main infarction sites of cerebral ischemia are cortex and striatum, which have high levels of A1 and A2A receptors. Cerebral ischemia is manifested with A1R decrease and A2AR increase, as well as reduction in the A1R-mediated inhibitory processes and enhancement of the A2AR-mediated excitatory process. Adenosine receptor dysfunction is also involved in the pathology of Alzheimer's disease (AD), depression, and epilepsy. Thus, the adenosine receptor balance theory is important for brain disease treatment. The concentration of adenosine can be increased by endogenous or exogenous pathways due to its short half-life and high inactivation properties. Therefore, we will discuss the function of adenosine and its receptors, adenosine formation, and metabolism, and its role for the treatment of CNS diseases (such as cerebral ischemia, AD, depression, Parkinson's disease, epilepsy, and sleep disorders). This article will provide a scientific basis for the development of novel adenosine derivatives through adenosine structure modification, which will lead to experimental applications.


Subject(s)
Adenosine/metabolism , Biomedical Research/trends , Central Nervous System Diseases/metabolism , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Animals , Central Nervous System Diseases/drug therapy , Humans , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Agonists/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...