Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452362

ABSTRACT

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Subject(s)
Fat Body , Glucosyltransferases , Tephritidae , Animals , Reproducibility of Results , Trehalose/metabolism , Gene Expression Profiling , Tephritidae/genetics , Tephritidae/metabolism , Transcriptome
2.
J Med Biochem ; 43(1): 63-71, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38496014

ABSTRACT

Background: Viral encephalitis (VE) is one of the common diseases of children with intracranial infection, it has come on urgent, progress is fast, and the clinical features of severe cases may even lead to disability, death, and other serious adverse prognostic outcomes, so seek in early diagnosis and prognosis of efficiency of the relevant indicators to stop in time and take effective means to prevent the further development is of great significance. Neopterin (NPT), as a factor that plays an important role in the process of validation development, has been relatively rarely studied in children with VE. Methods: In this study, 127 cases of children with VE were retrieved from the TCGA database by bioinformatics, and their amplitude integrated electroencephalogram (AEEG) related information was collected at the same time. The neurodevelopmental status of VE children was evaluated according to the Gesell scale and divided into the good group (n=88) and the poor group (n=39). The differences in NPT expression and AEEG score between them were observed. In addition, the clinical data of 100 children without VE were screened from the database, and the differences in NPT expression and AEEG score between VE children and non-VE children were compared. The ROC curve was used to evaluate the clinical efficacy of NPT combined with AEEG in diagnosis and prognosis prediction. Kaplan-Meier was used to observe the effect of NPT high expression and low expression on poor prognosis of VE children.

3.
BMC Genomics ; 24(1): 760, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082218

ABSTRACT

BACKGROUND: The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS: Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS: Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
4.
Int Immunopharmacol ; 125(Pt B): 111132, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951190

ABSTRACT

Inflammation plays an essential role in the development liver fibrosis.The Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is a central cytoplasmic DNA sensor which can recognize cytoplasmic DNA, known to trigger stimulator of interferon genes (STING) and downstream proinflammatory factors. Here, we investigated the role of cGAS-STING signaling pathway in the pathogenesis of liver fibrosis.Differentially expressed genes (DEGs) in human liver tissue were identified using RNA-Seq analysis. As models of liver fibrosis, chronic Carbon tetrachloride (CCl4) exposure were applied in cGAS-knockout mice. LX-2 cells were co-cultured with human liver sinusoidal endothelial cells (LSECs) to explore the underlying mechanisms of hepatic sinusoidal microthrombosis in an inflammatory microenvironment. The endoscopic ultrasound-guided portal vein pressure gradient (EUS-PPG) method was used to analyze the associations between hepatic sinusoidal microthrombosis and PPG in patients with liver fibrosis and portal hypertension (PTH). The RNA-seq analysis results showed that DEGs were enriched in inflammation and endothelial cell activation. The upregulation of the cGAS-STING signaling exacerbated liver fibrosis and intrahepatic inflammation. It also exacerbated LSECs impairment and increased the contribution of hepatic sinusoidal microthrombosis to liver fibrosis in vivo and in vitro. Prothrombotic mediators and proinflammatory factors were associated with PPG in patients with liver fibrosis and portal hypertension. Therefore, activating cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis, which may lead to increased portal vein pressure.


Subject(s)
Endothelial Cells , Hypertension, Portal , Animals , Mice , Humans , Liver Cirrhosis , Signal Transduction , Chromogranin A , DNA , Inflammation
5.
Front Physiol ; 14: 1220450, 2023.
Article in English | MEDLINE | ID: mdl-37817984

ABSTRACT

Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-stage renal disease (ESRD) and is increasingly being adopted and promoted worldwide. However, as the duration of peritoneal dialysis extends, it can expose problems with dialysis inadequacy and ultrafiltration failure. The exact mechanism and aetiology of ultrafiltration failure have been of great concern, with triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia toxins, and recurrent intraperitoneal inflammation initiating multiple pathways that regulate the release of various cytokines, promote the transcription of fibrosis-related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis occurs. Exploring the pathogenic factors and molecular mechanisms can help us prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.

6.
Plants (Basel) ; 12(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37896102

ABSTRACT

The MOR (Morphogenesis-related NDR kinase) signaling network, initially identified in yeast, exhibits evolutionary conservation across eukaryotes and plays indispensable roles in the normal growth and development of these organisms. However, the functional role of this network and its associated genes in maize (Zea mays) has remained elusive until now. In this study, we identified a total of 19 maize MOR signaling network genes, and subsequent co-expression analysis revealed that 12 of these genes exhibited stronger associations with each other, suggesting their potential collective regulation of maize growth and development. Further analysis revealed significant co-expression between genes involved in the MOR signaling network and several genes related to cold tolerance. All MOR signaling network genes exhibited significant co-expression with COLD1 (Chilling tolerance divergence1), a pivotal gene involved in the perception of cold stimuli, suggesting that COLD1 may directly transmit cold stress signals to MOR signaling network genes subsequent to the detection of a cold stimulus. The findings indicated that the MOR signaling network may play a crucial role in modulating cold tolerance in maize by establishing an intricate relationship with key cold tolerance genes, such as COLD1. Under low-temperature stress, the expression levels of certain MOR signaling network genes were influenced, with a significant up-regulation observed in Zm00001d010720 and a notable down-regulation observed in Zm00001d049496, indicating that cold stress regulated the MOR signaling network. We identified and analyzed a mutant of Zm00001d010720, which showed a higher sensitivity to cold stress, thereby implicating its involvement in the regulation of cold stress in maize. These findings suggested that the relevant components of the MOR signaling network are also conserved in maize and this signaling network plays a vital role in modulating the cold tolerance of maize. This study offered valuable genetic resources for enhancing the cold tolerance of maize.

7.
Insects ; 14(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623381

ABSTRACT

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notorious invasive pest that has raised concerns worldwide. Validamycin has been demonstrated to be a very strong inhibitor against trehalase in a variety of organisms. However, whether validamycin can inhibit trehalase activity to suppress trehalose hydrolysis and affect any other relevant physiological pathways in B. dorsalis remains unknown. In this study, the effects of validamycin injection on the synthesis and metabolism of trehalose and chitin were evaluated. The results show that validamycin injection significantly affected trehalase activity and caused trehalose accumulation. In addition, the downstream pathways of trehalose hydrolysis, including the synthesis and metabolism of chitin, were also remarkably affected as the expressions of the key genes in these pathways were significantly regulated and the chitin contents were changed accordingly. Intriguingly, the upstream trehalose synthesis was also affected by validamycin injection due to the variations in the expression levels of key genes, especially BdTPPC1. Moreover, BdTPPC1 was predicted to have a binding affinity to validamycin, and the subsequent in vitro recombinant enzyme activity assay verified the inhibitory effect of validamycin on BdTPPC1 activity for the first time. These findings collectively indicate that validamycin can be considered as a promising potential insecticide for the management of B. dorsalis.

8.
Ann Med ; 55(1): 2215538, 2023 12.
Article in English | MEDLINE | ID: mdl-37246836

ABSTRACT

OBJECTIVE: Bowman's capsule rupture (BCR) is a glomerular pathological change, but it is still not well recognized in immunoglobulin A vasculitis nephritis (IgAV-N). The Oxford MEST-C score is a classification for IgA nephropathy; however, its clinical correlation and prognostic value in adult patients with IgAV-N are unclear. METHODS: A retrospective study of 145 adult patients with IgAV-N diagnosed by renal biopsy was conducted. Clinical manifestations, pathological changes and the prognosis of IgAV-N patients were compared depending on the presence or absence of BCR, International Study of Kidney Disease in Children (ISKDC) classification and MEST-C score. The primary endpoint events were end-stage renal disease, renal replacement therapy and all-cause death. RESULTS: In total, 51 of 145 (35.17%) patients with IgAV-N presented with BCR. Patients with BCR had more proteinuria, lower serum albumin, and more crescents. Compared with IgAV-N patients with crescents only, 51/100 patients with crescents combined with BCR had a higher proportion of crescents in all glomeruli (15.79% vs. 9.09%; p = 0.003). Patients with higher ISKDC grades had more severe clinical presentation, but it did not reflect the prognosis. However, the MEST-C score not only reflected clinical manifestations but also predicted prognosis (p < 0.05). BCR contributed to the effectiveness of the MEST-C score in predicting the prognosis of IgAV-N (C-index: 0.845 to 0.855). CONCLUSIONS: BCR is associated with clinical manifestations and pathological changes in patients with IgAV-N. The ISKDC classification and MEST-C score are related to the patient's condition, but only the MEST-C score is correlated with the prognosis of patients with IgAV-N, while BCR can improve its predictive ability.


BCR was associated with clinical manifestations and pathological changes in patients with IgAV-N, particularly crescents.The ISKDC classification was related to clinical manifestations of patients with IgAV-N, but it wasn't associated with prognosis.The Oxford MEST-C score was correlated to clinical presentations and prognosis of patients with IgAV-N, while BCR can improve its predictive ability.


Subject(s)
Bowman Capsule , IgA Vasculitis , Humans , Adult , Bowman Capsule/pathology , Kidney/pathology , Kidney/physiopathology , Retrospective Studies , IgA Vasculitis/pathology , Male , Female , Sclerosis/pathology , Inflammation/pathology , Prognosis , Survival Analysis
9.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902048

ABSTRACT

Maize is a main food and feed crop with great production potential and high economic benefits. Improving its photosynthesis efficiency is crucial for increasing yield. Maize photosynthesis occurs mainly through the C4 pathway, and NADP-ME (NADP-malic enzyme) is a key enzyme in the photosynthetic carbon assimilation pathway of C4 plants. ZmC4-NADP-ME catalyzes the release of CO2 from oxaloacetate into the Calvin cycle in the maize bundle sheath. Brassinosteroid (BL) can improve photosynthesis; however, its molecular mechanism of action remains unclear. In this study, transcriptome sequencing of maize seedlings treated with epi-brassinolide (EBL) showed that differentially expressed genes (DEGs) were significantly enriched in photosynthetic antenna proteins, porphyrin and chlorophyll metabolism, and photosynthesis pathways. The DEGs of C4-NADP-ME and pyruvate phosphate dikinase in the C4 pathway were significantly enriched in EBL treatment. Co-expression analysis showed that the transcription level of ZmNF-YC2 and ZmbHLH157 transcription factors was increased under EBL treatment and moderately positively correlated with ZmC4-NADP-ME. Transient overexpression of protoplasts revealed that ZmNF-YC2 and ZmbHLH157 activate C4-NADP-ME promoters. Further experiments showed ZmNF-YC2 and ZmbHLH157 transcription factor binding sites on the -1616 bp and -1118 bp ZmC4 NADP-ME promoter. ZmNF-YC2 and ZmbHLH157 were screened as candidate transcription factors mediating brassinosteroid hormone regulation of the ZmC4 NADP-ME gene. The results provide a theoretical basis for improving maize yield using BR hormones.


Subject(s)
Brassinosteroids , Transcription Factors , Zea mays , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Malate Dehydrogenase/metabolism , NADP/metabolism , Photosynthesis/genetics , Transcription Factors/metabolism , Zea mays/drug effects , Zea mays/genetics , Zea mays/metabolism
10.
J Pediatr Nurs ; 68: e8-e15, 2023.
Article in English | MEDLINE | ID: mdl-36402600

ABSTRACT

PURPOSE: Music and animation are the most common and affordable distraction strategies to reduce preoperative anxiety in children; however, their effects are inconsistent. This study aimed to examine the effectiveness of two distraction strategies (music or animation) in reducing preoperative anxiety in children. DESIGN AND METHODS: In this randomized controlled trial, 183 children who underwent surgery were divided into music, animation, and control groups using a single-blind block randomized design. Children in the control group underwent routine preoperative visits. Meanwhile, the children in the intervention groups could choose their favorite music and cartoons as intervention content. Study outcomes included anxiety levels, degree of cooperation, heart rate, and blood pressure. Data were collected before entering the operating room, entering the operating room, and before the induction of anesthesia; only the degree of cooperation was collected before the induction of anesthesia. RESULTS: Only animation significantly reduced preoperative anxiety in the children (P < 0.05) upon entering the operating room. Both music and animation reduced the level of preoperative anxiety before induction of anesthesia; however, there was no significant difference between them (P > 0.05). The induction compliance score was significantly lower in the music and animation groups than in the control group (P < 0.05). Heart rates differed significantly between the three groups from before entering the operating room to before induction of anesthesia. Children in the control group had the highest systolic blood pressure upon entering the operating room (P < 0.05). CONCLUSIONS: Music and animation strategies can significantly reduce preoperative anxiety in children and improve surgical cooperation during anesthesia induction. TRIAL REGISTRATION: Clinical. TRIALS: gov NCT05285995.


Subject(s)
Music , Preoperative Care , Child , Humans , Single-Blind Method , Anxiety/prevention & control , Anesthesia, General
13.
Toxics ; 10(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36287834

ABSTRACT

Engineered nanoparticles have recently been used for innovation in agricultural disease management. However, both the toxicity effects and mechanisms of nanoparticles in target pathogens and their host plants are still largely unknown. Here, we found that magnesium oxide nanoparticles (MgO NPs) could protect potatoes against Phytophthora infestans (P. infestans) at a low dosage (50 µg/mL). Through scanning electron microscopy observation, antioxidant enzymes activity measurement, and gene transcriptome analysis, we found that the cell surfaces of P. infestans were destroyed, endogenous superoxide dismutase continuously remained in a higher active state, oxidoreductase activity-related gene ontology (GO) terms were enriched with upregulation, and transporter-activity related GO terms and six essential metabolism-related pathways were enriched with downregulation in P. infestans after 30 min MgO NPs treatment, whereas only 89 genes were changed without enriched GO and pathways terms, and no change in antioxidant activities and phenylalnine ammonialyase in potato appeared at 6 h post-MgO NPs treatment. Only the "plant hormone signal transduction pathway" was enriched with upregulation under differential expression analysis in potatoes. In conclusion, cell surface distortion, continuous oxidative stress, and inhibitions of membrane transport activity and metabolic pathways were toxic mechanisms of Mg ONPs in P. infestans, and the "plant hormone signal transduction pathway" was potentially regulated by Mg-ONPs without obviously harmful effects on potato after Mg ONPs exposure.

14.
Front Med (Lausanne) ; 9: 917603, 2022.
Article in English | MEDLINE | ID: mdl-35983095

ABSTRACT

Introduction: Serum albumin levels at a single time point have been shown to predict mortality in peritoneal dialysis (PD) patients. However, we believe that the dynamic change in albumin after PD may be more significant. In this study, we investigated the relationship between dynamic serum albumin and the clinical outcome of patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Methods: The participants in this study enrolled 586 patients who underwent CAPD at the peritoneal dialysis center of Second Xiangya Hospital in China. We retrospectively reviewed medical records from January 1, 2010, to December 31, 2019. Baseline serum albumin (Alb), time-averaged albumin level (TA-ALB) and serum albumin reach rate (SR: defined as the percentage of serum albumin measurements that reached ≥ 35 g/L) were applied as the predictor variables. All-cause mortality and cardiovascular mortality were used as the outcome variables. Hazard function of all-cause mortality and cardiovascular mortality in the study participants were examined by using Cox proportional hazard regression models. Results: Age (HR = 1.03, 95% CI 1.00-1.05), cardiovascular disease (HR = 1.80, 95% CI 1.07-3.03) and TA-ALB (HR = 0.92, 95% CI 0.85-0.99) were independent risk factors for all-cause mortality in PD patients. Patients with TA-ALB of <33 g/L (HR = 2.33, 95% CI 1.17-4.62) exhibited a higher risk for all-cause mortality than those with TA-ALB ≥ 36 g/L. Stratified SR showed a similar trend. Patients with a <25% SR exhibited a significantly increased risk for all-cause mortality (HR = 2.72, 95% CI, 1.24-5.96) by fully adjusted analysis. However, neither TA-ALB nor SR were associated with the risk of cardiovascular mortality after adjusted analysis. Conclusion: This study demonstrated that age, cardiovascular disease, and TA-ALB were independent risk factors for all-cause mortality in PD patients. TA-ALB and SR can better predict the prognosis of PD patients than baseline Alb. Dynamic changes in Alb are more clinically significant than baseline Alb in predicting mortality risk.

15.
Front Endocrinol (Lausanne) ; 13: 889729, 2022.
Article in English | MEDLINE | ID: mdl-35992101

ABSTRACT

Diabetic nephropathy (DN) causes serious renal tubule and interstitial damage, but effective prevention and treatment measures are lacking. Abnormal mitophagy may be involved in the progression of DN, but its upstream and downstream regulatory mechanisms remain unclear. Melatonin, a pineal hormone associated with circadian rhythms, is involved in regulating mitochondrial homeostasis. Here, we demonstrated abnormal mitophagy in the kidneys of DN mice or high glucose (HG)-treated HK-2 cells, which was accompanied by increased oxidative stress and inflammation. At the same time, the melatonin treatment alleviated kidney damage. After mitochondrial isolation, we found that melatonin promoted AMPK phosphorylation and accelerated the translocation of PINK1 and Parkin to the mitochondria, thereby activating mitophagy, reducing oxidative stress, and inhibiting inflammation. Interestingly, the renal protective effect of melatonin can be partially blocked by downregulation of PINK1 and inhibition of AMPK. Our studies demonstrated for the first time that melatonin plays a protective role in DN through the AMPK-PINK1-mitophagy pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Melatonin , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Inflammation/metabolism , Kidney/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mitophagy
16.
Genesis ; 60(8-9): e23494, 2022 09.
Article in English | MEDLINE | ID: mdl-35894656

ABSTRACT

Periodontium possesses stem cell populations for its self-maintenance and regeneration, and has been proved to be an optimal stem cell source for tissue engineering. In vitro studies have shown that stem cells can be isolated from periodontal ligament, alveolar bone marrow and gingiva. In recent years, more studies have focused on identification of periodontal stem cells in vivo. Multiple genetic markers, including Gli1, Prx1, Axin2, αSMA, and LepR, were identified with the lineage tracing approaches. Characteristics, functions, and regulatory mechanisms of specific populations expressing one of these markers have been investigated. In vivo studies also revealed that periodontal stem cells can be regulafrted by different niche and mechanisms including intercellular interactions, ECM and multiple secreted factors. In this review, we summarized the current knowledge of in vitro characteristics and in vivo markers of periodontal stem cells, and discussed the specific regulating niche.


Subject(s)
Guided Tissue Regeneration, Periodontal , Stem Cells , Genetic Markers , Periodontal Ligament/physiology , Zinc Finger Protein GLI1
17.
Front Med (Lausanne) ; 9: 874916, 2022.
Article in English | MEDLINE | ID: mdl-35692535

ABSTRACT

Background: The micro-inflammatory state is important for the occurrence of diabetic kidney disease (DKD). Here, we aimed to explore the expression of pyroptosis related indicators and ultrastructural characteristics in DKD, and investigate pyroptosis in renal tubular epithelial cells induced by high glucose. Methods: Immunohistochemistry was used to detect expression of the inflammation-related protein NOD-like receptor protein 3 (NLRP3) and pyroptosis key protein gasdermin D (GSDMD) in kidney tissues of DKD patients. HK-2 cells were cultured in vitro and stimulated with different concentrations of glucose. The changes in HK-2 cell ultrastructure were observed using electronmicroscopy, and western blot was used to detect NLRP3, caspase-1 p20, GSDMD-N, interleukin (IL)-1ß, and IL-18 expression. Results: NLRP3 and GSDMD expression in kidney tissues of DKD patients was higher than that in control subjects. Further, GSDMD expression was positively correlated with that of NLRP3 (r = 0.847, P = 0.02). After stimulating HK-2 cells for 24 h with different glucose concentrations, compared with the control group, the 15 and 30 mmol/L glucose groups showed typical ultrastructural changes of pyroptosis. The protein expression of NLRP3, caspase-1 p20, GSDMD-N, IL-1ß, and IL-18 expression in high glucose group increased significantly compared with the control group, and was glucose-concentration-dependent. Conclusion: High glucose can activate inflammasome, cause inflammatory cytokines release, and induce pyroptosis in HK-2 cells. NLRP3-caspase-1 may be involved in GSDMD-mediated pyroptosis. This study shows a novel relationship between glucose concentration and pyroptosis, which can be studied further to design better therapies for patients with DKD.

18.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562912

ABSTRACT

Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation of starch. This study aimed to report the detailed structure, function, and evolution of genes encoding PHO1 and PHO2 and their protein ligand-binding sites in eight monocots and four dicots. "True" orthologs of PHO1 and PHO2 of Oryza sativa were identified, and the structure of the enzyme at the protein level was studied. The genes controlling PHO2 were found to be more conserved than those controlling PHO1; the variations were mainly due to the variable sequence and length of introns. Cis-regulatory elements in the promoter region of both genes were identified, and the expression pattern was analyzed. The real-time quantitative polymerase chain reaction indicated that PHO2 was expressed in all tissues with a uniform pattern of transcripts, and the expression pattern of PHO1 indicates that it probably contributes to the starch biosynthesis during seed development in Zea mays. Under abscisic acid (ABA) treatment, PHO1 was found to be downregulated in Arabidopsis and Hordeum vulgare. However, we found that ABA could up-regulate the expression of both PHO1 and PHO2 within 12 h in Zea mays. In all monocots and dicots, the 3D structures were highly similar, and the ligand-binding sites were common yet fluctuating in the position of aa residues.


Subject(s)
Arabidopsis , Magnoliopsida , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Ligands , Magnoliopsida/metabolism , Phosphorylases/metabolism , Plastids/metabolism , Starch/genetics , Starch/metabolism , Starch Phosphorylase/metabolism , Zea mays/genetics , Zea mays/metabolism
19.
Front Med (Lausanne) ; 9: 799110, 2022.
Article in English | MEDLINE | ID: mdl-35492330

ABSTRACT

Objective: The number of elderly patients on peritoneal dialysis (PD) has rapidly increased in the past few decades. We sought to explore the microbiology and outcomes of peritonitis in elderly PD patients compared with younger PD patients. Methods: We conducted a retrospective study to analyze the clinical characteristics, causative organism distribution, and outcome of all PD patients who developed peritonitis between September 1, 2014 and December 31, 2020, from Second Xiangya Hospital, Central South University, China. Patients who experienced peritonitis were separated into elderly and younger groups. The elderly was defined as ≥ 65 years old at the initiation of PD. Results: Among 1,200 patients, 64(33.9%) in elderly (n = 189) and 215 (21.3%) in younger (n = 1,011) developed at least one episode of peritonitis. A total of 394 episodes of peritonitis occurred in 279 patients. Of these, 88 episodes occurred in 64 elderly patients, and 306 episodes occurred in 215 younger patients. Gram-positive bacteria were the main causative organisms in elderly and younger patients (43.2% and 38.0%, respectively). Staphylococcus and Escherichia coli were the most common gram-positive and gram-negative bacteria, respectively. Fungal peritonitis in elderly patients was higher compared with younger patients (χ2 = 6.55, P = 0.01). Moreover, Acinetobacter baumannii (χ 2=9.25, P = 0.002) and polymicrobial peritonitis (χ 2 = 6.41, P = 0.01) in elderly patients were also significantly higher than that in younger patients. Additionally, elderly PD patients had higher peritonitis-related mortality than younger patients (χ 2 = 12.521, P = 0.000), though there was no significant difference in catheter removal between the two groups. Kaplan-Meier analysis showed that cumulative survival was significantly lower in elderly patients than younger patients (log rank = 7.867, p = 0.005), but similar technical survival in both groups (log rank = 0.036, p = 0.849). Conclusions: This retrospective study demonstrated that elderly PD patients were more likely to develop Acinetobacter baumannii, fungal and polymicrobial peritonitis than younger PD patients. In addition, peritonitis-related mortality was significantly higher in elderly patients, whereas peritonitis-related catheter removal was comparable between elderly and younger PD patients. Understanding microbiology and outcome in elderly patients will help to reduce the incidence of PD-associated peritonitis and improve the quality of life.

20.
Front Microbiol ; 13: 824224, 2022.
Article in English | MEDLINE | ID: mdl-35479615

ABSTRACT

Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.

SELECTION OF CITATIONS
SEARCH DETAIL
...