Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578074

ABSTRACT

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Subject(s)
Emetics , Food Microbiology , Recombinases/genetics , Bacillus cereus/genetics , CRISPR-Cas Systems , Sensitivity and Specificity , Nucleotidyltransferases/genetics
2.
Food Chem ; 449: 139245, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583402

ABSTRACT

Accurate consumer perception of food packages should provide real-time feedback on any changes inside food packaging. Hence, a new multilayer gas-sensitive label (POA-12) was prepared using a layer-by-layer pouring method for simple, visual, and real-time detection of pork's freshness, while the front side was developed by immobilizing red carbon dots and fluorescein isothiocyanate in POA as indicator for volatile nitrogen, and the back side was created using bromothymol blue in POA as pH indicator. The swelling index of the multilayer gas-sensitive labels reduced from 159.19% to 148.36%, and the tensile strength increased from 25.52 MPa to 42.61 MPa. In addition, the POA-12 multilayer label showed a red-to-yellow fluorescence change as TVB-N increased from 6.84 to 31.4 and a yellow-brown-to-blue-green color change as pH increased from 5.74 to 7.24 when detecting pork samples. Thus, it provides dual-indicator monitoring that improves the accuracy and reliability of assessing the freshness of high-protein products.


Subject(s)
Agar , Food Packaging , Animals , Food Packaging/instrumentation , Swine , Agar/chemistry , Hydrogen-Ion Concentration , Food Labeling , Gases/chemistry , Gases/analysis , Pork Meat/analysis , Meat/analysis , Color
3.
Adv Mater ; : e2313513, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461147

ABSTRACT

The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx @C). This effect facilitates the formation of high-density O (VO ) and Ni (VNi ) vacancy sites with different charge polarities, specifically FLP-VO -C basic sites and FLP-VNi -C acidic sites. The synergistic interaction between FLP-VO -C and FLP-VNi -C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx @C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx @C/g-C3 N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1 , surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.

4.
Small ; 20(1): e2304720, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649208

ABSTRACT

The development of nanomaterials with high photothermal conversion efficiency has been a hot issue. In this work, a novel photothermal nanomaterial is synthesized using Prussian blue nanocubes (PBNCs) as the photothermal active substance and covalent organic framework (COF) as the substrate. The as-prepared COF@PBNCs show a high photothermal conversion efficiency of 59.1%, significantly higher than that of pure PBNCs (32.5%). A new circuit path is generated with the combination of COF, which prevents the direct combination of thermal electrons and holes, as well as enhances the nonradiation transition of PBNCs. Besides, the imine groups on COF as the coordination and reduction agent allow the in situ growth of PBNCs, and the dense micropores of COF as the ideal heat conduction channels can also be the potential factors for the enhanced photothermal property. The photothermal property of COF@PBNCs is further used in the construction of immunosensor for the detection of furosemide (FUR). With the help of handheld thermal imager, the concentration of FUR can be easily read, thus shedding a new light in the construction of visual sensor for simple and low-cost point-of-care testing.

5.
Food Chem ; 438: 137981, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38007950

ABSTRACT

Comprehensive attention should be paid to the potential food spoilage in food transport. However, there is a problem of freshness destruction by repeated freezing and thawing during the cold chain transport. Herein, a fluorescent hydrogel with N-doped green-emitting carbon dots (N-GCDs), bovine serum albumin-gold nanoclusters (BSA-AuNCs) as fluorescent probes and polyvinyl alcohol-sodium alginate hydrogel as carrier matrix was developed to continuously detect temperature and freshness. Due to the solvatochromic effect of N-GCDs, when the temperature surpassed the threshold, the mixture of water and dimethyl sulfoxide underwent a phase transition and melted into the gel, changing the fluorescence color to realize the temperature monitoring. Then, due to the pH effect of BSA-AuNCs, the gel could respond to pH changes in food deterioration to monitor the food freshness. Thus, the changes of both fluorescence color and intensity of the hydrogel provides a new method for visual and portable authenticity of food freshness.


Subject(s)
Hydrogels , Refrigeration , Temperature , Serum Albumin, Bovine , Fluorescent Dyes
6.
Anal Chem ; 95(48): 17878-17885, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37978921

ABSTRACT

In this article, we report on the first distance-based readout self-powered potentiometric sensor. The approach is considered more user-friendly for detection by the naked eye and is less prone to optical interferences compared with a direct observation of the pixel darkening. pH-selective electrodes were chosen as a model system to demonstrate the principle in which seven bar-shaped pixels connected in series on one e-paper share one common ground. By connecting each of the pixels serially to capacitors of different capacitances, the fraction of the measurement cell voltage loaded onto the pixels becomes controllable. Consequently, the pixels give different gray values when powered by the same ion-selective electrode (ISE). As a result, the pH information on the sample is visualized as a distance-based signal and the dependence between the capacitance and 1/K (the reciprocal slope in the relationship between absorbance and pH) was constructed. In the current system, a 1 µF capacitance difference changes the value of 1/K by 4.18. With the current setup, the pH accuracy is about 0.5 when comparing the e-paper output to a color card.

7.
Anal Chem ; 95(48): 17444-17449, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37978946

ABSTRACT

Self-powered potentiometric sensors are attractive because of their simple operation, low cost, fast response, and ability to be integrated with electronic components. Self-powered potentiometric sensors that give a direct colorimetric output are especially interesting, because no power supply is needed, which dramatically reduces waste. Recently reported work from our group using an electronic paper display, however, exhibits limitations, because the visualization of small pH changes is difficult. A self-powered ion-selective potentiometric sensor is introduced here that may amplify the e-paper pixel sensitivity by improving the self-powered circuit. The voltage is amplified by changing the circuit from incorporating parallel to incorporating serial capacitors. With three such capacitors, a greatly improved sensitivity is observed, amplifying the absorbance 3-fold. A portable device is realized that changes the position of the capacitors from parallel to serial through a simple mechanical sliding action. As a result, the pH information on the sample is more easily visualized with a pH uncertainty of about 0.1 when comparing the e-paper output to a color card.

8.
Anal Chem ; 95(37): 14135-14142, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669908

ABSTRACT

Cereulide, the exotoxin of emetic Bacillus cereus, has garnered considerable attention due to its capacity to produce foodborne poisonings and great chemical stability. Herein, a G-quadruplex-hemin DNAzyme-based biosensor was developed to detect cereulide in the homogeneous solution. Due to the special ring structure and high affinity to K+, cereulide can be attracted and intercalated into the G-quadruplex; thus, the properties of the G4 DNAzyme can be altered. The melting temperature (Tm) of the G4 DNAzyme in the presence or absence of cereulide was 58.75 and 50.10 °C, respectively, proving the intercalation of cereulide into the G4 DNAzyme. By using the polychromic fluorescence modality of CdTe quantum dots and o-phenylenediamine to assess the variation in the catalytic activity of the DNAzyme, the intercalation of cereulide had bidirectional effects in G4 DNAzyme-mediated reactions, showing that the fluorescence intensity of CdTe quantum dots displayed a linear relationship with the concentration of cereulide from 0.16 to 40 µg/mL with the limit of detection (LOD) of 0.10 µg/mL, while the fluorescence intensity of DAP exhibited a linear relationship with the concentration of cereulide from 0.02 to 40 µg/mL with the LOD of 0.01 µg/mL. It will be a perspective step of controlling cereulide as a hazardous material in food or the environment.


Subject(s)
Cadmium Compounds , DNA, Catalytic , Quantum Dots , Tellurium
9.
Anal Chem ; 95(42): 15769-15777, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37734028

ABSTRACT

Inspired by the molecular crowding effect in biological systems, a novel heterogeneous quadratic amplification molecular circuit (HEQAC) was developed for sensitive bimodal miRNA profiling (HEQAC-BMP) by combining an MNAzyme-based DNA nanomachine with an entropy-driven catalytic hairpin assembly (E-CHA) autocatalytic circuit. Utilizing ferromagnetic nanomaterials as the substrate for DNA nanomachines, a biomimetic heterogeneous interface was established; thus, a localized molecular crowding system was created that can elevate the local reaction concentration and accelerate the molecular recognition process for a significant threshold signal. Simultaneously, the threshold signal undergoes further amplification by E-CHA and is transformed into a chemical signal, enabling a colorimetric-fluorescence bimodal signal readout. The HEQAC-BMP enables miRNA detection from 10 aM to 10 nM with detection limits of 3.7 aM (colorimetry) and 4.8 aM (fluorometry), respectively. Moreover, the design principle and strategy of HEQAC-BMP can be customized to address other critical viruses or diseases with life-threatening and socioeconomic impacts, enhancing healthcare outcomes for individuals.

10.
Anal Chem ; 95(30): 11383-11390, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37458998

ABSTRACT

Point-of-care testing (POCT), with its portability and high sensitivity, is an analytical device for rapid on-site sensing and detection. In this study, a POCT device was designed for the portable detection of illegal additives by integrating a coil device that can visually sense color distance and a two-electrode electrochemical system. Real-time monitoring of pressure changes was achieved by driving CeO2@Pt/Au nanoparticle (NP)-labeled antibodies into a competitive immunoreaction, in which CeO2 and Pt/Au synergistically catalyzed the production of large amounts of O2 from H2O2, leading to a significant increase in gas within the closed chamber. Attractively, the coil device converted the pressure stimulus into visually readable change in distance for semi-quantitative detection of the target substance, while the electrical signal output caused by the changes of the solution around the electrodes achieved accurate and reliable quantification of the target. In addition, the proposed dual-mode pressure immunoassay device has acceptable selectivity, stability, and reproducibility. Herein, this portable device, which enables target concentration readings by converting pressure into multiple signals, provides an effective way to visualize POCT assays in resource-limited areas.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Point-of-Care Systems , Gold/chemistry , Hydrogen Peroxide/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Limit of Detection , Immunoassay
11.
Biosensors (Basel) ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37367030

ABSTRACT

The development of multifunctional biomimetic nanozymes with high catalytic activity and sensitive response is rapidly advancing. The hollow nanostructures, including metal hydroxides, metal-organic frameworks, and metallic oxides, possess excellent loading capacity and a high surface area-to-mass ratio. This characteristic allows for the exposure of more active sites and reaction channels, resulting in enhanced catalytic activity of nanozymes. In this work, based on the coordinating etching principle, a facile template-assisted strategy for synthesizing Fe(OH)3 nanocages by using Cu2O nanocubes as the precursors was proposed. The unique three-dimensional structure of Fe(OH)3 nanocages endows it with excellent catalytic activity. Herein, in the light of Fe(OH)3-induced biomimetic nanozyme catalyzed reactions, a self-tuning dual-mode fluorescence and colorimetric immunoassay was successfully constructed for ochratoxin A (OTA) detection. For the colorimetric signal, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) can be oxidized by Fe(OH)3 nanocages to form a color response that can be preliminarily identified by the human eye. For the fluorescence signal, the fluorescence intensity of 4-chloro-1-naphthol (4-CN) can be quantitatively quenched by the valence transition of Ferric ion in Fe(OH)3 nanocages. Due to the significant self-calibration, the performance of the self-tuning strategy for OTA detection was substantially enhanced. Under the optimized conditions, the developed dual-mode platform accomplishes a wide range of 1 ng/L to 5 µg/L with a detection limit of 0.68 ng/L (S/N = 3). This work not only develops a facile strategy for the synthesis of highly active peroxidase-like nanozyme but also achieves promising sensing platform for OTA detection in actual samples.


Subject(s)
Colorimetry , Peroxidase , Humans , Colorimetry/methods , Biomimetics , Oxidoreductases , Peroxidases/chemistry
12.
Biosens Bioelectron ; 234: 115338, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37137191

ABSTRACT

The construction of an immunosensor based on ultralong chemiluminescence is challenged due to the shortage of highly efficient initiator for long and stable catalysis. Herein, the heterogeneous Au/Pt@CuO/Cu2O catalyst was used to investigate the structure-activity relationship, while Au/Pt significantly promotes the activity of CuO/Cu2O to catalyze H2O2 and thus produces ·OH and O2•- radicals in highly alkaline solutions, resulting in the strong and long chemiluminescence in the reaction with luminol (10 mL, more than 4 min with 1 µg catalyst). By using the Au/Pt@CuO/Cu2O as the label in the immunoassay, the strong and long chemiluminescence could initiate the photocurrent of the photoelectrochemical (PEC) substrate, and the luminescence time could influence the photocurrent extinction time, thus a self-powered time-resolved PEC immunosensor was developed to detect furosemide, showing a linear relationship between the extinction time and the logarithm of concentrations from 10-3 to 1 µg/L. This work not only experimentally verifies that the Pt-O-Cu bond in heterogeneous catalysts breaks the pH limitation of the Fenton reaction, but also realizes the chemiluminescence for self-powered time-resolved immunosensor, thereby expanding the portable applicability of chemiluminescence in food safety inspection, health monitoring, and biomedical detection without external light source.


Subject(s)
Biosensing Techniques , Luminescence , Electrochemical Techniques/methods , Biosensing Techniques/methods , Hydrogen Peroxide , Immunoassay/methods , Limit of Detection
13.
Dalton Trans ; 52(23): 8040-8050, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37227152

ABSTRACT

Copper complexes have long been considered as a promising class of anticancer or antibacterial therapeutics. In this paper, two novel copper(II) complexes containing a ß-carboline derivative and amino acids, namely [Cu(1-Im-ßc)(L-Val)]ClO4·0.5H2O (Cu1) and [Cu(1-Im-ßc)(L-Phe)]ClO4·0.5H2O (Cu2), where 1-Im-ßc = 1-(2-imidazolyl)-ß-carboline, L-Val = L-valine, and L-Phe = L-phenylalanine, were designed and synthesized. The complexes were characterized by elemental analysis, infrared spectroscopy, molar conductivity measurements, and mass spectrometry to determine their spatial structures and compositions. Both complexes bind to DNA by insertion. The complexes also show a good affinity for human serum albumin (HSA). In addition, the antitumor activity of the two complexes against lung cancer cells (A549), cervical cancer cells (HeLa), and breast cancer cells (MBA-MD-231) is significantly superior to that of the traditional antitumor drug, cisplatin. Finally, the anticancer mechanism results show that the complexes can induce apoptosis in HeLa cells, which is associated with mitochondrial damage, oxidative stress caused by reactive oxygen species (ROS) production, and activation of the caspase protein family. This study demonstrates that the introduction of aromatic heterocyclic alkaloid ligands with a broad spectrum of biological activities and water-soluble amino acid ligands into copper complexes can regulate their amphiphilic properties and biological activity, so as to obtain highly efficient copper-based therapeutics.


Subject(s)
Copper , Humans , Amino Acids/chemistry , Cell Line, Tumor , Copper/chemistry , DNA/chemistry , Lipids/chemistry , Models, Molecular , Serum Albumin, Human/chemistry , Protein Structure, Tertiary , Apoptosis/drug effects , Antineoplastic Agents/pharmacology
14.
Anal Chem ; 95(13): 5764-5772, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36961977

ABSTRACT

Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , DNA/chemistry , Biosensing Techniques/methods , Logic , Catalysis , Limit of Detection
15.
ACS Omega ; 8(5): 4639-4648, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36777579

ABSTRACT

Organic dyes can produce harmful effects on the water environment, such as affecting the growth of aquatic organisms, reducing the transparency of water bodies, and causing eutrophication of water bodies, so it is necessary to mitigate the hazards of organic dyes. In this study, a metal-organic framework [NH2-MIL-101(Fe)] was synthesized by the solvothermal method as a carrier for the in situ uniform deposition of AgCl nanoparticles on its surface, which was successfully used for both adsorption and degradation of Congo red. Adsorption results showed that the adsorption kinetics conformed to the proposed secondary adsorption kinetics equation with a maximum adsorption capacity of 248.4 mg·g-1. Furthermore, the degradation results indicated that with the aid of sodium borohydride as a reducing agent, the degradation of Congo red followed pseudo-first-order kinetics with a degradation rate of 0.077 min-1, and the complete degradation of Congo red was finished within 18 min. Therefore, AgCl/NH2-MIL-101(Fe) may find a potential application in the removal of dyes from wastewater.

16.
Compr Rev Food Sci Food Saf ; 22(2): 1285-1311, 2023 03.
Article in English | MEDLINE | ID: mdl-36717757

ABSTRACT

Mycotoxin contamination in foods and other goods has become a broad issue owing to serious toxicity, tremendous threat to public safety, and terrible loss of resources. Herein, it is necessary to develop simple, sensitive, inexpensive, and rapid platforms for the detection of mycotoxins. Currently, the limitation of instrumental and chemical methods cannot be massively applied in practice. Immunoassays are considered one of the best candidates for toxin detection due to their simplicity, rapidness, and cost-effectiveness. Especially, the field of dual-mode immunosensors and corresponding assays is rapidly developing as an advanced and intersected technology. So, this review summarized the types and detection principles of single-mode immunosensors including optical and electrical immunosensors in recent years, then focused on developing dual-mode immunosensors including integrated immunosensors and combined immunosensors to detect mycotoxins, as well as the combination of dual-mode immunosensors with a portable device for point-of-care test. The remaining challenges were discussed with the aim of stimulating future development of dual-mode immunosensors to accelerate the transformation of scientific laboratory technologies into easy-to-operate and rapid detection platforms.


Subject(s)
Biosensing Techniques , Mycotoxins , Mycotoxins/analysis , Biosensing Techniques/methods , Immunoassay/methods , Food
17.
J Hazard Mater ; 443(Pt A): 130233, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36308933

ABSTRACT

Ochratoxin A (OTA), which has strong hepatotoxicity and nephrotoxicity, can accumulate in the human body through the food chain; thus, the selective and effective detection of OTA is urgently required for food security. Nanozymes with hyperfine size and shape control have attracted attention because of their controllable structure and intrinsic activity. Herein, CuFe-bimetal coordinated N-doped carbon (Cu@Fe-NC) with morphology-driven peroxidase-mimicking activity was synthesized using Cu2O with specific polygonal cubes and fully exposed {111} crystalline facets as the template to produce a CuFe-bimetallic metal organic framework (MOF) and further treating CuFe-MOF with high-temperature pyrolysis. N-doping can confer electronegativity to exhibit high affinity, while the large surface area of the porous carbon support can facilitate rapid adsorption-desorption equilibrium. Using the peroxidase-mimicking Cu@Fe0.5-NC as a carrier, a versatile immunoassay for the detection of OTA was implemented based on the ratiometric fluorescence and the localized surface plasmon resonance peak shift, achieving a detection limit of 0.52 ng/L in the range of 0.001-10 µg/L. Therefore, the strategy of enhancing enzyme-mimicking activity using specific shapes and crystalline facets may open new avenues for food and environmental analysis.


Subject(s)
Metal-Organic Frameworks , Ochratoxins , Humans , Metal-Organic Frameworks/chemistry , Peroxidase , Colorimetry , Peroxidases/chemistry , Oxidoreductases , Carbon/chemistry , Coloring Agents
18.
Biosens Bioelectron ; 219: 114797, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36252313

ABSTRACT

Nanozymes are commonly used in the construction of immunosensors, yet they are generally susceptible to pH condition, which greatly hindered their practical use. To break the limitation of pH conditions, polyethyleneimine-coated Prussian blue nanocubes (PBNCs@PEI) were synthesized as the pH-switchable nanozyme, which can show peroxidase-like and catalase-like activity in acidic and alkaline condition, respectively. Besides, the modification of PEI can largely improve the catalytic activity of PBNCs. Herein, the pH-switchable catalytic property of PBNCs@PEI was used to construct the dual-mode immunosensor for the detection of illegal additive, rosiglitazone. In acidic condition, PBNCs@PEI showed excellent peroxidase-like activity, which can trigger the colorimetric reaction of Au nanostars with TMB2+/CTAB. In alkaline condition, the catalase-like activity of PBNCs@PEI prevailed, thus the decomposition of H2O2 can generate O2 to initiate the aerobic oxidation of 4-chloro-1-naphthol (4-CN), which can decrease the fluorescence intensity of 4-CN. Based on the competitive immunoassay, both the localized surface plasmon resonance wavelength shift of Au nanostars and the fluorescence intensity change of 4-CN were quantitatively related with rosiglitazone concentration, thus shedding a new light on the construction of broad-pH-responsive immunosensor. Besides, a smart device was developed to transfer the chroma value of Au nanostars into the RSG concentration, making this sensor a promising method in on-site and point-of-care detection.


Subject(s)
Biosensing Techniques , Catalase , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Rosiglitazone , Immunoassay/methods , Hydrogen-Ion Concentration
19.
Talanta ; 251: 123793, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35952501

ABSTRACT

Circulating tumor cells (CTCs), as a type of tumor, have attracted wide attention because of their characteristics of shedding from the primary tumor and spreading to other tissues and organs through peripheral blood. The circulating tumor DNA (ctDNA), the DNA released by CTCs and other tumor cells into the peripheral blood, was considered as a promising detection substance for clinical application. By utilizing the biocompatibility of red blood cells to realize the attachment of tetrahedral DNA (TDN), as well as the specific target recognition ability of TDN to enable efficient recognition of targets, a biocompatible electrochemical biosensor for effective and rapid detection of ctDNA was developed using methylene blue (MB) as the signal probe. The current signal and the logarithm of ctDNA concentration were linearly correlated in the range from 1 fM to 100 pM with the detection limit of 0.66 fM. With high specificity, the TDN-based biosensor can detect ctDNA efficiently in the real biological environment such as serum, which provided a potential opportunity for the early clinical diagnosis.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Nanostructures , Neoplastic Cells, Circulating , DNA/chemistry , Electrochemical Techniques , Erythrocytes , Humans , Limit of Detection , Methylene Blue , Nanostructures/chemistry
20.
Mikrochim Acta ; 189(8): 312, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35920920

ABSTRACT

Due to the highly similar genetic background, it is difficult to distinguish Bacillus cereus (B. cereus) with other members of B. cereus group. Herein, an antibody-based colorimetric immunoassay using Cu-doped CeO2 nanospheres as peroxidase mimics was developed for the detection of B. cereus in food. First, monoclonal antibodies (mAbs) and polyclonal antibody (pAb) with good specificity to B. cereus were prepared and characterized. Second, the regular-shaped hollow Cu/CeO2 nanospheres with highly catalytic activity and biocompatibility were synthesized as mimic nanozymes to capture secondary antibody. Finally, a sandwich colorimetric immunoassay for the specific and sensitive detection of B. cereus was developed, showing linear detection range from 3.2 × 102 to 1 × 105 CFU/mL and a limit detection of 1.7 × 102 CFU/mL. The developed immunoassay holds great potential as an effective tool for detecting B. cereus in food poisoning.


Subject(s)
Bacillus cereus , Nanospheres , Antibodies, Monoclonal , Colorimetry , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...