Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Quant Imaging Med Surg ; 14(7): 4965-4971, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022263

ABSTRACT

Background: The diagnosis of lymphedema primarily relies on the clinical symptoms, signs, medical history and imaging. Objective lymphatic imaging helps improving the diagnosis of lymphedema. This study aimed to develop an effective imaging tool to diagnose lymphedema. Methods: This is a single-center retrospective study. From September 2022 to November 2023, we enrolled thirty-two patients, involving 40 lower extremities who underwent lymphatic contrast-enhanced ultrasound (CEUS) following a subcutaneous injection of contrast agent at four points in the First Affiliated Hospital of Sun Yat-sen University. Cohen's kappa value, sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated. Lymphoscintigraphy was the reference standard. Results: Successful lymphatic-CEUS detection was defined as the situation that lymphatic drainage of medial or lateral lower limbs were observed. The successful detection rate was 100% (40 of 40). The diagnosis of lymphedema was based on the presence of either medial or lateral lymphatic obstructions, or subcutaneous lymphatic enhancement. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy for diagnosing lymphedema by lymphatic-CEUS were as follows: 91.2% (31 of 34), 100% (6 of 6), 100% (31 of 31), 66.7% (6 of 9) and 92.5% (37 of 40), respectively. The Cohen's Kappa value was 0.756. The area under the receiver operating characteristic curve (AUC) for the subcutaneous injection of four-point lymphatic-CEUS was 0.956. Conclusions: This study put forward a novel four-point lymphatic-CEUS method to detect the functions of the lymphatics of lower extremities and established a lymphatic-CEUS standard for diagnosing lymphedema of lower extremities. Four-point lymphatic-CEUS is a considerable option for diagnosing lymphedema of lower extremities.

2.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874377

ABSTRACT

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Subject(s)
Cambium , Cyclopentanes , Cytokinins , Gene Expression Regulation, Plant , Oxylipins , Plant Proteins , Populus , Signal Transduction , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Cambium/genetics , Cambium/growth & development , Cambium/metabolism , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Mutation/genetics , Protein Binding/drug effects , Cell Differentiation
3.
Sci Rep ; 14(1): 13619, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871989

ABSTRACT

The slow-developing neurological disorder Alzheimer's disease (AD) has no recognized etiology. A bioinformatics investigation verified copper metabolism indicators for AD development. GEO contributed AD-related datasets GSE1297 and GSE5281. Differential expression analysis and WGCNA confirmed biomarker candidate genes. Each immune cell type in AD and control samples was scored using single sample gene set enrichment analysis. Receiver Operating Characteristic (ROC) analysis, short Time-series Expression Miner (STEM) grouping, and expression analysis between control and AD samples discovered copper metabolism indicators that impacted AD progression. We test clinical samples and cellular function to ensure study correctness. Biomarker-targeting miRNAs and lncRNAs were predicted by starBase. Trust website anticipated biomarker-targeting transcription factors. In the end, Cytoscape constructed the TF/miRNA-mRNA and lncRNA-miRNA networks. The DGIdb database predicted biomarker-targeted drugs. We identified 57 differentially expressed copper metabolism-related genes (DE-CMRGs). Next, fourteen copper metabolism indicators impacting AD progression were identified: CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38. A TF/miRNA-mRNA regulation network was then established with two miRNAs (hsa-miR-34a-5p and 34c-5p), six TFs (NFKB1, RELA, MYC, HIF1A, JUN, and SP1), and four biomarkers. The DGIdb database contained 171 drugs targeting ten copper metabolism-relevant biomarkers (BRCA1, MITF, NFKBIA, CD38, CCK2, HPRT1, SPHK1, LDHA, SCG5, and SYT1). Copper metabolism biomarkers CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38 alter AD progression, laying the groundwork for disease pathophysiology and novel AD diagnostic and treatment.


Subject(s)
Alzheimer Disease , Biomarkers , Copper , Microphthalmia-Associated Transcription Factor , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Copper/metabolism , Biomarkers/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Gene Regulatory Networks , Computational Biology/methods , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling
4.
Oral Dis ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934473

ABSTRACT

OBJECTIVES: The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS: Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS: Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS: IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.

5.
J Proteome Res ; 23(7): 2576-2586, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38860290

ABSTRACT

The relationship between antibiotic resistance and bacterial virulence has not yet been fully explored. Here, we use Edwardsiella tarda as the research model to investigate the proteomic change upon oxytetracycline resistance (LTB4-ROTC). Compared to oxytetracycline-sensitive E. tarda (LTB4-S), LTB4-ROTC has 234 differentially expressed proteins, of which the abundance of 84 proteins is downregulated and 15 proteins are enriched to the Type III secretion system, Type VI secretion system, and flagellum pathways. Functional analysis confirms virulent phenotypes, including autoaggregation, biofilm formation, hemolysis, swimming, and swarming, are impaired in LTB4-ROTC. Furthermore, the in vivo bacterial challenge in both tilapia and zebrafish infection models suggests that the virulence of LTB4-ROTC is attenuated. Analysis of immune gene expression shows that LTB4-ROTC induces a stronger immune response in the spleen but a weaker response in the head kidney than that induced by LTB4-S, suggesting it's a potential vaccine candidate. Zebrafish and tilapia were challenged with a sublethal dose of LTB4-ROTC as a live vaccine followed by LTB4-S challenge. The relative percentage of survival of zebrafish is 60% and that of tilapia is 75% after vaccination. Thus, our study suggests that bacteria that acquire antibiotic resistance may attenuate virulence, which can be explored as a potential live vaccine to tackle bacterial infection in aquaculture.


Subject(s)
Drug Resistance, Bacterial , Edwardsiella tarda , Enterobacteriaceae Infections , Oxytetracycline , Tilapia , Zebrafish , Edwardsiella tarda/pathogenicity , Edwardsiella tarda/drug effects , Edwardsiella tarda/genetics , Animals , Oxytetracycline/pharmacology , Virulence/drug effects , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/drug therapy , Tilapia/microbiology , Fish Diseases/microbiology , Fish Diseases/immunology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Proteomics/methods , Bacterial Vaccines/immunology
6.
Plant Sci ; 346: 112159, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901779

ABSTRACT

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Lignin , Plant Proteins , Plants, Genetically Modified , Populus , Populus/genetics , Populus/metabolism , Populus/growth & development , Cell Wall/metabolism , Lignin/metabolism , Lignin/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Xylem/metabolism , Xylem/genetics , Wood/metabolism , Wood/genetics , Wood/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , CYS2-HIS2 Zinc Fingers , Zinc Fingers
7.
Int J Antimicrob Agents ; 64(2): 107214, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795933

ABSTRACT

Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.

8.
Plant Sci ; 346: 112115, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38768868

ABSTRACT

The formation of adventitious roots (AR) is an essential step in the vegetative propagation of economically woody species. Reactive oxygen species (ROS) function as signaling molecules in regulating root growth and development. Here, we identified an R2R3-MYB transcription factor PagMYB180 as a regulator of AR formation in hybrid poplar (Populus alba × Populus glandulosa). PagMYB180 was specifically expressed in the vascular tissues of poplar roots, stems and leaves, and its protein was localized in the nucleus and acted as a transcriptional repressor. Both dominant repression and overexpression of PagMYB180 resulted in a significant reduction of AR quantity, a substantial increase of AR length, and an elevation of both the quantity and length of lateral roots (LR) compared to the wild type (WT) plants. Furthermore, PagMYB180 regulates programmed cell death (PCD) in root cortex cells, which is associated with elevated levels of ROS. Transcriptome and reverse transcription-quantitative PCR (RT-qPCR) analyses revealed that a series of differentially expressed genes are related to ROS, PCD and ethylene synthesis. Taken together, these results suggest that PagMYB180 may regulate AR development via a ROS/PCD-dependent pathway in poplar.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Populus , Reactive Oxygen Species , Transcription Factors , Populus/genetics , Populus/growth & development , Populus/metabolism , Reactive Oxygen Species/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Apoptosis/genetics , Plants, Genetically Modified/genetics , Signal Transduction
9.
Ann Rheum Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38724075

ABSTRACT

OBJECTIVE: Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS: FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS: We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION: Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.

10.
Respir Res ; 25(1): 205, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730297

ABSTRACT

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
12.
Int Immunopharmacol ; 128: 111433, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38181676

ABSTRACT

OBJECTIVE: Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS: FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS: Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Berberine/analogs & derivatives , Synoviocytes , Humans , Mice , Animals , Aggression , Cell Movement , Arthritis, Rheumatoid/drug therapy , Synovial Membrane/pathology , Cell Proliferation , Fibroblasts , Cells, Cultured
13.
Arthritis Rheumatol ; 76(2): 192-205, 2024 02.
Article in English | MEDLINE | ID: mdl-37584615

ABSTRACT

OBJECTIVE: Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N6 -methyladenosine (m6 A) modification plays key roles in various diseases, but its role in the pathogenesis of RA is largely unknown. Here, we investigate increased demethylase ALKBH5 promotion of proliferation, migration, and invasion of RA FLSs via regulating JARID2 expression. METHODS: ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m6 A sequencing combined with RNA sequencing was performed to identify the potential targets of ALKBH5. RNA immunoprecipitation and RNA pulldown were then used to validate the interaction between the protein and messenger RNA (mRNA). Collagen-induced arthritis (CIA) and delayed-type hypersensitivity arthritis (DTHA) models were further established to assess the therapeutic potency of ALKBH5 in vivo. RESULTS: We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m6 A modification in the JARID2 mRNA and enhanced its mRNA stability in cooperation with IGF2BP3. Intriguingly, the severity of arthritis was attenuated in mice with DTHA and ALKBH5 knockout or rats with CIA and intra-articular injection of ALKBH5 short hairpin RNA. CONCLUSION: Our findings suggest that ALKBH5-mediated m6 A modification is crucial for synovial hyperplasia and invasion in RA. ALKBH5 might be a potential therapeutic target for RA and even for dysregulated fibroblasts in a wide range of diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Mice , Rats , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Cell Movement , Cell Proliferation/genetics , Cells, Cultured , Fibroblasts/metabolism , Methylation , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Synoviocytes/metabolism
14.
Int J Pharm ; 649: 123656, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38040392

ABSTRACT

Neuroprotection is one of the core treatment strategies for brain injuries including traumatic brain injury (TBI). NR2B9c is a promising neuroprotective peptide but its clinical translation is limited because of poor brain penetrability. Exosomes are naturally occurring nanovesicles having therapeutic potential for TBI as well as an efficient drug delivery carrier to the brain. Here, we engineered exosomes with neuron targeting peptide rabies virus glycoprotein (RVG29) via bio-orthogonal click chemistry technique and loaded it with NR2B9c, developing RVG-ExoNR2B9c. RVG29 conjugated exosome had higher neuron targeting efficiency compared to naïve exosomes both in vivo and in vitro. RVG-ExoNR2B9c had great cytoprotective effect against oxygen glucose deprived Neuro2a cells. Intravenous administration of RVG-ExoNR2B9c significantly improved behavioral outcomes and reduced the lesion volume after TBI injury in a mice controlled cortical impact model. Due to their multifunctionality and significant efficacy, we anticipate that RVG-ExoNR2B9c have the potential to be translated both as therapeutic agent as well as cargo delivery system to the brain for the treatment of TBI.


Subject(s)
Brain Injuries, Traumatic , Exosomes , Mice , Animals , Neuroprotection , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain , Peptides , Drug Carriers/pharmacology
15.
J Inflamm Res ; 16: 4913-4924, 2023.
Article in English | MEDLINE | ID: mdl-37927958

ABSTRACT

Background: Although the potential of coronavirus disease 2019 (COVID-19) patients to develop pulmonary embolism (PE) is widely recognized, the underlying mechanism has not been completely elucidated. This study aimed to identify genes common to COVID-19 and PE to reveal the underlying pathogenesis of susceptibility to PE in COVID-19 patients. Methods: COVID-19 genes were obtained from the GEO database and the OMIM, CTD, GeneCards, and DisGeNET databases; PE genes were obtained from the OMIM, CTD, GeneCards, and DisGeNET databases. We overlapped the genes of COVID-19 and PE to obtain common genes for additional analysis, including functional enrichment, protein-protein interaction, and immune infiltration analysis. Hub genes were identified using cytoHubba, a plugin of Cytoscape, and validated using the independent datasets GSE167000 and GSE13535. The genes validated by the above datasets were further validated in clinical samples. Results: We obtained 36 genes shared by PE and COVID-19. Functional enrichment and immune infiltration analyses revealed the involvement of cytokines and immune activation. Five genes (CCL2, CXCL10, ALB, EGF, and MKI67) were identified as hub genes common to COVID-19 and PE. CXCL10 was validated in both independent datasets (GSE167000 and GSE13535). Serum levels of CXCL10 in the COVID-19 group and the COVID-19 combined with PE group were significantly higher than those in the healthy control group (P<0.001). In addition, there were significant differences between the COVID-19 group and the COVID-19 combined with PE group (P<0.01). Conclusion: Our study reveals common genes shared by PE and COVID-19 and identifies CXCL10 as a possible cause of susceptibility to PE in COVID-19 patients.

16.
J Transl Med ; 21(1): 821, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978515

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH), an infrequent disease, is characterized by excessive pulmonary vascular remodeling and proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its underlying molecular mechanisms remain unclear. Uncovering its molecular mechanisms will be beneficial to the treatment of PH. METHODS: Differently expressed genes (DEGs) in the lung tissues of PH patients were analyzed with a GEO dataset GSE113439. From these DEGs, we focused on TRIM59 which was highly expressed in PH patients. Subsequently, the expression of TRIM59 in the pulmonary arteries of PH patients, lung tissues of PH rat model and PASMCs cultured in a hypoxic condition was verified by quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Furthermore, the role of TRIM59 in PAMSC proliferation and pathological changes in PH rats was assessed via gain-of-function and loss-of-function experiments. In addition, the transcriptional regulation of YAP1/TEAD4 on TRIM59 was confirmed by qPCR, western blot, luciferase reporter assay, ChIP and DNA pull-down. In order to uncover the underlying mechanisms of TRIM59, a protein ubiquitomics and a CoIP- HPLC-MS/MS were companied to identify the direct targets of TRIM59. RESULTS: TRIM59 was highly expressed in the pulmonary arteries of PH patients and lung tissues of PH rats. Over-expression of TRIM59 accelerated the proliferation of PASMCs, while TRIM59 silencing resulted in the opposite results. Moreover, TRIM59 silencing mitigated the injuries in heart and lung and attenuated pulmonary vascular remodeling during PH. In addition, its transcription was positively regulated by YAP1/TEAD4. Then we further explored the underlying mechanisms of TRIM59 and found that TRIM59 overexpression resulted in an altered ubiquitylation of proteins. Accompanied with the results of CoIP- HPLC-MS/MS, 34 proteins were identified as the direct targets of TRIM59. CONCLUSION: TRIM59 was highly expressed in PH patients and promoted the proliferation of PASMCs and pulmonary vascular remodeling, thus contributing to the pathogenesis of PH. It is indicated that TRIM59 may become a potential target for PH treatment.


Subject(s)
Hypertension, Pulmonary , Humans , Rats , Animals , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Vascular Remodeling/genetics , Tandem Mass Spectrometry , Signal Transduction , Cell Proliferation/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypoxia/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitination , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , TEA Domain Transcription Factors , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
17.
J Proteome Res ; 22(11): 3489-3498, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37856871

ABSTRACT

Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.


Subject(s)
Fish Diseases , Norfloxacin , Humans , Animals , Norfloxacin/pharmacology , Norfloxacin/metabolism , Edwardsiella tarda/metabolism , Proteomics , Siderophores/metabolism , Anti-Bacterial Agents/pharmacology , Fish Diseases/microbiology
18.
Food Sci Biotechnol ; 32(11): 1541-1549, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37637845

ABSTRACT

Pyrraline, one of advanced glycation end-products, is formed in advanced Maillard reactions. It was reported that the presence of pyrraline was tested to be associated with nephropathy and diabetes. Pyrraline might result in potential health risks because many modern diets are heat processed. In the study, an integrated metabolomics by ultra-high-performance liquid chromatography with mass spectrometry was used to evaluate the effects of pyrraline on metabolism in rats. Thirty-two metabolites were identified as differential metabolites. Linolenic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism and glycerophospholipid metabolism were the main perturbed networks in this pathological process. Differential metabolites and metabolic pathways we found give new insights into studying the toxic molecular mechanisms of pyrraline. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01256-7.

19.
Int Immunopharmacol ; 122: 110502, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390648

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease causing joint dysfunction. As disease-modifying anti-rheumatic drugs (DMARDs) have poor efficacy in 20% to 25% of RA patients, additional novel RA medications are urgently needed. Schisandrin (SCH) has multiple therapeutic effects. However, whether SCH is effective against RA remains unknown. PURPOSE: To investigate how SCH affects the abnormal behaviours of RA fibroblast-like synoviocytes (FLSs) and further elucidate the underlying mechanism of SCH in RA FLSs and collagen-induced arthritis (CIA) mice. METHODS: Cell Counting Kit-8 (CCK8) assays were used to characterize cell viability. EdU assays were performed to assess cell proliferation. Annexin V-APC/PI assays were used to determine apoptosis. Transwell chamber assays were used to measure cell migration and invasion in vitro. RT-qPCR was used to assess proinflammatory cytokine and MMP mRNA expression. Western blotting was used to detect protein expression. RNA sequencing was performed to explore the potential downstream targets of SCH. CIA model mice were used to assess the treatment efficacy of SCH in vivo. RESULTS: Treatments with SCH (50, 100, and 200 µΜ) inhibited RA FLSs proliferation, migration, invasion, and TNF-α-induced IL-6, IL-8, and CCL2 expression in a dose-dependent manner but did not affect RA FLSs viability or apoptosis. RNA sequencing and Reactome enrichment analysis indicated that SREBF1 might be the downstream target in SCH treatment. Furthermore, knockdown of SREBF1 exerted effects similar to those of SCH in inhibiting RA FLSs proliferation, migration, invasion, and TNF-α-induced expression of IL-6, IL-8, and CCL2. Both SCH treatment and SREBF1 knockdown decreased activation of the PI3K/AKT and NF-κB signalling pathways. Moreover, SCH ameliorated joint inflammation and cartilage and bone destruction in CIA model mice. CONCLUSION: SCH controls the pathogenic behaviours of RA FLSs by targeting SREBF1-mediated activation of the PI3K/AKT and NF-κB signalling pathways. Our data suggest that SCH inhibits FLS-mediated synovial inflammation and joint damage and that SCH might have therapeutic potential for RA.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Mice , Arthritis, Experimental/pathology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Cell Movement , Antirheumatic Agents/therapeutic use , Fibroblasts , Cell Proliferation , Cells, Cultured
20.
Front Plant Sci ; 14: 1196618, 2023.
Article in English | MEDLINE | ID: mdl-37360718

ABSTRACT

Programmed cell death (PCD) is a genetically regulated developmental process leading to the death of specific types of plant cells, which plays important roles in plant development and growth such as wood formation. However, an efficient method needs to be established to study PCD in woody plants. Flow cytometry is widely utilized to evaluate apoptosis in mammalian cells, while it is rarely used to detect PCD in plants, especially in woody plants. Here, we reported that the xylem cell protoplasts from poplar stem were stained with a combination of fluorescein annexin V-FITC and propidium iodide (PI) and then sorted by flow cytometry. As expected, living cells (annexin V-FITC negative/PI negative), early PCD cells (annexin V-FITC positive/PI negative), and late PCD cells (annexin V-FITC positive/PI positive) could be finely distinguished through this method and then subjected for quantitative analysis. The expression of cell-type- and developmental stages-specific marker genes was consistent with the cell morphological observation. Therefore, the newly developed fluorescence-activated cell sorting (FACS) method can be used to study PCD in woody plants, which will be beneficial for studying the molecular mechanisms of wood formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...