Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Acta Pharm Sin B ; 14(6): 2685-2697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828153

ABSTRACT

Targeting androgen receptor (AR) has shown great therapeutic potential in triple-negative breast cancer (TNBC), yet its efficacy remains unsatisfactory. Here, we aimed to identify promising targeted agents that synergize with enzalutamide, a second-generation AR inhibitor, in TNBC. By using a strategy for screening drug combinations based on the Sensitivity Index (SI), we found that MK-8776, a selective checkpoint kinase1 (CHK1) inhibitor, showed favorable synergism with enzalutamide in AR-positive TNBC. The combination of enzalutamide and MK-8776 was found to exert more significant anti-tumor effects in TNBC than the single application of enzalutamide or MK-8776, respectively. Furthermore, a nanoparticle-based on hyaluronic acid (HA)-modified hollow-manganese dioxide (HMnO2), named HMnE&M@H, was established to encapsulate and deliver enzalutamide and MK-8776. This HA-modified nanosystem managed targeted activation via pH/glutathione responsiveness. HMnE&M@H repressed tumor growth more obviously than the simple addition of enzalutamide and MK-8776 without a carrier. Collectively, our study elucidated the synergy of enzalutamide and MK-8776 in TNBC and developed a novel tumor-targeted nano drug delivery system HMnE&M@H, providing a potential therapeutic approach for the treatment of TNBC.

2.
iScience ; 27(4): 109506, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715945

ABSTRACT

It is imperative to explore biomarkers that are both precise and readily accessible in the comprehensive management of breast cancer. A multicenter cohort, including 512 breast cancer patients and 198 nonneoplastic individuals, was recruited to detect the level of tumor-derived extracellular vesicles using our method based on dual DNA tetrahedral nanostructures. The level of tumor-derived extracellular vesicles was significantly higher in newly diagnosed breast cancer patients than in nonneoplastic individuals at a cutoff value of 3.58 U/µL. For postoperative metastasis monitoring, the level of tumor-derived extracellular vesicles was significantly higher in breast cancer patients with metastasis than in those without metastasis at a cutoff value of 3.91 U/µL. Its efficacy of diagnosis and metastasis monitoring was superior to traditional tumor markers. Elevated level of tumor-derived extracellular vesicles served as a predictive biomarker for diagnosis and metastasis monitoring in breast cancer patients.

3.
Burns Trauma ; 12: tkad050, 2024.
Article in English | MEDLINE | ID: mdl-38312740

ABSTRACT

Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.

4.
Chin Med J (Engl) ; 137(3): 338-349, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38105538

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer associated with poor prognosis and limited treatment options. The androgen receptor (AR) has emerged as a potential therapeutic target for luminal androgen receptor (LAR) TNBC. However, multiple studies have claimed that anti-androgen therapy for AR-positive TNBC only has limited clinical benefits. This study aimed to investigate the role of AR in TNBC and its detailed mechanism. METHODS: Immunohistochemistry and TNBC tissue sections were applied to investigate AR and nectin cell adhesion molecule 4 (NECTIN4) expression in TNBC tissues. Then, in vitro and in vivo assays were used to explore the function of AR and estrogen receptor beta (ERß) in TNBC. Chromatin immunoprecipitation sequencing (ChIP-seq), co-immunoprecipitation (co-IP), molecular docking method, and luciferase reporter assay were performed to identify key molecules that affect the function of AR. RESULTS: Based on the TNBC tissue array analysis, we revealed that ERß and AR were positive in 21.92% (32/146) and 24.66% (36/146) of 146 TNBC samples, respectively, and about 13.70% (20/146) of TNBC patients were ERß positive and AR positive. We further demonstrated the pro-tumoral effects of AR on TNBC cells, however, the oncogenic biology was significantly suppressed when ERß transfection in LAR TNBC cell lines but not in AR-negative TNBC. Mechanistically, we identified that NECTIN4 promoter -42 bp to -28 bp was an AR response element, and that ERß interacted with AR thus impeding the AR-mediated NECTIN4 transcription which promoted epithelial-mesenchymal transition in tumor progression. CONCLUSIONS: This study suggests that ERß functions as a suppressor mediating the effect of AR in TNBC prognosis and cell proliferation. Therefore, our current research facilitates a better understanding of the role and mechanisms of AR in TNBC carcinogenesis.


Subject(s)
Androgens , Triple Negative Breast Neoplasms , Humans , Androgens/therapeutic use , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/therapeutic use , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Molecular Docking Simulation , Cell Line, Tumor
5.
Chem Biol Interact ; 383: 110676, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37586544

ABSTRACT

Solanesol is a tetra sesquiterpene enol with various biological activities. Modern medical studies have confirmed that solanesol has the function of lipid antioxidation and scavenges free radicals. This study aimed to investigate the protective effect of solanesol against oxidative damage induced by high glucose on human normal hepatocytes (L-02 cells) and its possible mechanism. The results showed that solanesol could effectively improve the decrease of cell viability induced by high glucose, decrease the contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in the extracellular medium, increased the enzyme activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), balanced the level of reactive oxygen species (ROS) in cells, inhibited lipid peroxidation of all kinds of biological membranes, and restored mitochondrial membrane potential (MMP). In addition, Solanesol also inhibited the expression of Keap1, promoted the nuclear translocation of Nrf2 by hydrogen bonding with Nrf2, and activated the expression of downstream antioxidant factors NQO1 and HO-1. Altogether, these findings suggest that solanesol may be a potential protectant against diabetic liver injury.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Hepatocytes , Antioxidants/pharmacology , Antioxidants/metabolism
6.
Medicine (Baltimore) ; 102(32): e34728, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37565866

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a type of difficult-to-cure arthralgia with a worldwide prevalence. It severely affects people's living standards. For a long time, bee venom has been used to treat RA and has shown good results. Melittin is the main active component of bee venom used for RA treatment, but the molecular mechanism of melittin in RA treatments remains unclear. METHODS: Potential melittin and RA targets were obtained from relevant databases, and common targets of melittin and RA were screened. The STRING database was used to build the PPI network and screen the core targets after visualization. The core targets were enriched by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Finally, the binding of melittin to target proteins was evaluated through simulated molecular docking, which verified the reliability of the prediction results of network pharmacology. RESULTS: In total, 138 melittin targets and 5795 RA targets were obtained from relevant databases, and 90 common targets were obtained through intersection. Eighteen core targets, such as STAT3, AKT1, tumor necrosis factor, and JUN, were screened out. Enrichment analysis results suggested that melittin plays an anti-RA role mainly through tumor necrosis factor, interleukin-17, toll-like receptors, and advanced glycation end products-RAGE signaling pathways, and pathogenic bacterial infection. Molecular docking results suggested that melittin has good docking activity with core target proteins. CONCLUSION: RA treatment with melittin is the result of a multi-target and multi-pathway interaction. This study offers a theoretical basis and scientific evidence for further exploring melittin in RA therapy.


Subject(s)
Arthritis, Rheumatoid , Bee Venoms , Drugs, Chinese Herbal , Humans , Melitten/pharmacology , Melitten/therapeutic use , Molecular Docking Simulation , Network Pharmacology , Reproducibility of Results , Tumor Necrosis Factor-alpha , Arthritis, Rheumatoid/drug therapy , Medicine, Chinese Traditional
7.
Chin Med J (Engl) ; 135(20): 2436-2445, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36583862

ABSTRACT

BACKGROUND: Cancer immunotherapy has emerged as a promising strategy against triple-negative breast cancer (TNBC). One of the immunosuppressive pathways involves programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), but many patients derived little benefit from PD-1/PD-L1 checkpoint blockades treatment. Prior research has shown that MYC, a master transcription amplifier highly expressed in TNBC cells, can regulate the tumor immune microenvironment and constrain the efficacy of immunotherapy. This study aims to investigate the regulatory relationship between MYC and PD-L1, and whether a cyclin-dependent kinase (CDK) inhibitor that inhibits MYC expression in combination with anti-PD-L1 antibodies can enhance the response to immunotherapy. METHODS: Public databases and TNBC tissue microarrays were used to study the correlation between MYC and PD-L1. The expression of MYC and PD-L1 in TNBCs was examined by quantitative real-time polymerase chain reaction and Western blotting. A patient-derived tumor xenograft (PDTX) model was used to evaluate the influence of a CDK7 inhibitor THZ1 on PD-L1 expression. Cell proliferation and migration were detected by 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation and cell migration assays. Tumor xenograft models were established for in vivo verification. RESULTS: A high MYC expression level was associated with a poor prognosis and could alter the proportion of tumor-infiltrating immune cells (TIICs). The positive correlation between MYC and PD-L1 was confirmed by immunostaining samples from 165 TNBC patients. Suppression of MYC in TNBC caused a reduction in the levels of both PD-L1 messenger RNA and protein. In addition, antitumor immune response was enhanced in the TNBC cancer xenograft mouse model with suppression of MYC by CDK7 inhibitor THZ1. CONCLUSIONS: The combined therapy of CDK7 inhibitor THZ1 and anti-PD-L1 antibody appeared to have a synergistic effect, which might offer new insight for enhancing immunotherapy in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Programmed Cell Death 1 Receptor , Ligands , Immunotherapy , B7-H1 Antigen/genetics , Apoptosis , Tumor Microenvironment
8.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1336-1348, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36148946

ABSTRACT

As an indicator of clinical prognosis, lymph node metastasis of breast cancer has drawn great attention. Many reports have revealed the characteristics of metastatic breast cancer cells, however, the effect of breast cancer cells on the microenvironment components of lymph nodes and spatial transcriptome atlas remains unclear. In this study, by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we investigate the transcriptional profiling of six surgically excised lymph node samples and the spatial organization of one positive lymph node. We identify the existence of osteoclast-like giant cells (OGC) which have high expressions of CD68 and CD163, the biomarkers of tumor-associated macrophages (TAMs). Through a spatially resolved transcriptomic method, we find that OGCs are scattered among metastatic breast cancer cells. In the lymph node microenvironment with breast cancer cell infiltration, TAMs are enriched in protumoral pathways including NF-κB signaling pathways and NOD-like receptor signaling pathways. Further subclustering demonstrates the potential differentiation trajectory in which macrophages develop from a state of active chemokine production to a state of active lymphocyte activation. This study is the first to integrate scRNA-seq and spatial transcriptomics in the tumor microenvironment of axillary lymph nodes, offering a systematic approach to delve into breast cancer lymph node metastasis.


Subject(s)
Breast Neoplasms , Humans , Female , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Breast Neoplasms/metabolism , Transcriptome , Lymph Nodes/metabolism , Lymph Nodes/pathology , Signal Transduction , Tumor Microenvironment/genetics
9.
Front Immunol ; 13: 918223, 2022.
Article in English | MEDLINE | ID: mdl-35990622

ABSTRACT

Diabetes is a systemic disease in which patients with diabetes may develop peripheral neuropathy of the lower extremities and peripheral vascular disease due to long-term continuous exposure to high glucose. Delayed wound healing in diabetes is one of the major complications of diabetes. Slow wound healing in diabetic patients is associated with high glucose toxicity. When the condition deteriorates, the patient needs to be amputated, which seriously affects the quality of life and even endangers the life of the patient. In general, the delayed healing of diabetes wound is due to the lack of chemokines, abnormal inflammatory response, lack of angiogenesis and epithelial formation, and fibroblast dysfunction. The incidence of several chronic debilitating conditions is increasing in patients with diabetes, such as chronic renal insufficiency, heart failure, and hepatic insufficiency. Fibrosis is an inappropriate deposition of extracellular matrix (ECM) proteins. It is common in diabetic patients causing organ dysfunction. The fibrotic mechanism of diabetic fibroblasts may involve direct activation of permanent fibroblasts. It may also involve the degeneration of fibers after hyperglycemia stimulates immune cells, vascular cells, or organ-specific parenchymal cells. Numerous studies confirm that fibroblasts play an essential role in treating diabetes and its complications. The primary function of fibroblasts in wound healing is to construct and reshape the ECM. Nowadays, with the widespread use of single-cell RNA sequencing (scRNA-seq), an increasing number of studies have found that fibroblasts have become the critical immune sentinel cells, which can detect not only the activation and regulation of immune response but also the molecular pattern related to the injury. By exploring the heterogeneity and functional changes of fibroblasts in diabetes, the manuscript discusses that fibroblasts may be used as immunomodulatory factors in refractory diabetic wound healing, providing new ideas for the treatment of refractory diabetic wound healing.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Diabetes Mellitus/metabolism , Fibroblasts/metabolism , Glucose/metabolism , Humans , Immunity , Quality of Life , Wound Healing/physiology
10.
Int Immunopharmacol ; 111: 109174, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998505

ABSTRACT

Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.


Subject(s)
Radiation-Protective Agents , Skin Diseases , Ecosystem , Humans , Inflammation/pathology , Radiation-Protective Agents/pharmacology , Skin/pathology , Skin Diseases/pathology , Ultraviolet Rays/adverse effects
11.
J Ethnopharmacol ; 298: 115590, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35973631

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. is an orchid species that is found throughout Asia, including Thailand, Laos, Vietnam, and China. It has been used to treat tumors, hyperglycemia, hyperlipidemia, and neurological disorders caused by aging in recent decades. AIM OF THE STUDY: To investigate the antagonistic effect of Dendrobium nobile Lindl. Polysaccharides (DNLP) on UVA-induced photoaging of Human foreskin fibroblasts (HFF-1) and explore its possible anti-aging mechanisms. MATERIALS AND METHODS: An in vitro photoaging model of dermal fibroblasts was established with multiple UVA irradiations. Fibroblasts were treated with 0.06 mg/ml, 0.18 mg/ml, 0.54 mg/ml of DNLP one day before photodamage induction. The levels of reactive oxygen species (ROS), Malondialdehyde (MDA), cell viability and longevity, Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione peroxidase (GSH-Px) enzymatic activities were determined. We examined how DNLP ameliorates the effects of photoaging, the JNK/c-Fos/c-Jun pathway, senescence-associated ß-galactosidase (SA-ß-Gal), and MMP expression levels were measured. RESULTS: UVA irradiation reduced the viability, lifespan, and proliferation of HFF-1 cells, increased ROS and lipid peroxidation and decreased the activities of free radical scavenging enzyme systems SOD, CAT, and GSH-Px. DNLP treatment can reverse UVA damage, reduce SA-ß-Gal expression, reduce phosphorylation activation of the JNK/c-Fos/c-Jun pathway and inhibit MMP-1, MMP-2 MMP-3, and MMP-9 protein expression. CONCLUSIONS: DNLP can effectively inhibit UVA damage to HFF-1 and prevent cell senescence. Its mechanism of action may increase antioxidant enzyme activity while inhibiting JNK pathway activation and MMPs expression.


Subject(s)
Dendrobium , Skin Aging , Skin Diseases , Antioxidants/metabolism , Antioxidants/pharmacology , Fibroblasts , Humans , MAP Kinase Signaling System , Polysaccharides/pharmacology , Reactive Oxygen Species/metabolism , Skin , Skin Diseases/metabolism , Superoxide Dismutase/metabolism , Thailand , Ultraviolet Rays/adverse effects
12.
Article in English | MEDLINE | ID: mdl-35368764

ABSTRACT

Diabetic cutaneous ulcers (DCU) are a chronic and refractory complication of diabetes mellitus, which can lead to amputation or even death in extreme cases. Promoting the early healing of DCU and reducing the disability rate and treatment cost are important research topics in treating with integrated traditional Chinese and Western medicine. Centella asiatica total glycosides are extracted from the traditional Chinese medicine Centella asiatica and have angiogenic, anticancer, antioxidant, and wound healing effects. Nitric oxide (NO) is a critical component of wound healing. During the development of DCU, endogenous NO secretion is insufficient. It has been reported that exogenous nitric oxide can promote wound healing, but it is difficult to adhere to the skin because of its short half-life. Therefore, in this study, we used the polymer excipient hydroxyethyl cellulose as the matrix, combined with Centella asiatica total glycosides and NO, and developed a new type of topical gel that can promote wound healing. At the same time, we made a comprehensive research and evaluation on the preparation technology, quality standard, skin toxicity, reproductive toxicity, and pharmacodynamics against diabetic skin ulcers of the gel. According to our research results, the combination of Centella asiatica total glycosides and nitric oxide can accelerate the healing speed of DCU wounds, and 8% Centella asiatica total glycosides nitric oxide gel (CATGNOG) has the best effect in ulcer wound healing. CATGNOG has the advantages of feasible preparation method, controllable quality, good stability at low temperature, and no apparent skin toxicity and reproductive toxicity. It can effectively inhibit the growth of bacteria on the wound surface, relieve the inflammatory reaction of the wound surface, and promote the healing of ulcer wound, which provides a basis for further research of the preparation in the future.

13.
Probiotics Antimicrob Proteins ; 14(2): 252-262, 2022 04.
Article in English | MEDLINE | ID: mdl-35325390

ABSTRACT

This study aimed to investigate the probiotic potential of gut indigenous lactic acid bacteria (LAB) originated from Apis cerana. Six Limosilactobacillus reuteri and one Lactobacillus helveticus were isolated from gut samples of A. cerana adult worker bee. All isolates antagonized the growth of pathogens including Salmonella typhimurium, Escherichia coli, Shigella flexneri, and Flavobacterium frigidimaris, and L. helveticus KM7 showed the greatest antimicrobial activity among them. All strains were sensitive to cefotaxime, amoxicillin, cephalothin, penicillin G, kanamycin, and vancomycin, moderately sensitive to novobiocin and resistant to gentamicin. Six out of seven strains were sensitive to ampicillin. L. helveticus KM7 was chosen to evaluate in vivo probiotic effect of adult worker bees of A. cerana through fed sucrose syrup supplemented with KM7. Administration of KM7 increased survival rate and gut LAB but decreased gut fungi and Enterococcus in honeybees. Expressions of genes related to antimicrobial peptides (AMPs) including Abaecin and Defensin were also induced in the gut of honeybees. The results suggested that L. helveticus KM7 with greater probiotic properties could improve the survival rate of adult worker honeybees of A. cerana through regulating gut microbiota and AMPs genes expression.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Probiotics , Animals , Bees , Enterococcus , Gastrointestinal Microbiome/genetics , Lactobacillus/physiology , Probiotics/pharmacology
14.
PLoS One ; 17(2): e0263249, 2022.
Article in English | MEDLINE | ID: mdl-35130275

ABSTRACT

The cell orientation characteristics of the natural combs of honey bees have received much research attention. Although natural combs have been shown to be composed of cells with three orientations-vertical, intermediate (oblique), and horizontal-the proportion of comb cells in these three orientations varies. Knowledge of the comb-building preferences of honey bees is essential for the installation of wax comb foundations, and clarification of the cell orientation characteristics of natural honey bee combs is important for beekeeping. The purpose of this study was to determine the cell orientation characteristics of natural combs of Eastern honey bees (Apis cerana cerana) and Western honey bees (Apis mellifera ligustica). Newly built combs were used to measure the orientation of hexagonal cells and calculate the proportion of cells in different orientations relative to the total number of cells. The number of eggs laid by queens in the cells of different orientations was also determined. The orientation of cells in the natural combs of Eastern and Western honey bees was determined based on the value of the minimum included angle between the pair of parallel cell walls and a vertical line connecting the top and bottom bars of the movable frame in the geometric plane of the comb: 0°≤θ≤10°, 10°<θ≤20°, and 20°<θ≤30° for vertical, intermediate, and horizontal orientations, respectively. Natural combs were composed of cells with at least one orientation (vertical or horizontal), two orientations (vertical + intermediate (oblique) or vertical + horizontal), or three orientations (vertical + intermediate + horizontal), and the proportions of combs with the three aforementioned configurations differed. Both Eastern honey bees and Western honey bees preferred building combs with cells in a vertical orientation. Queens showed no clear preference for laying eggs in cells of specific orientations. The results of this study provide new insight that could aid the production and cutting of wax comb foundations of Eastern and Western honey bees. Our study highlights the importance of installing wax comb foundations compatible with the comb-building preferences of bees.


Subject(s)
Bees , Cell Polarity/physiology , Nesting Behavior/physiology , Zygote/physiology , Animals , Beekeeping , Clutch Size/physiology , Female , Male , Oviposition/physiology
15.
Nat Prod Res ; 36(7): 1827-1833, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32940065

ABSTRACT

The nectar of Camellia reticulata Lindl. contains sugar, amino acids and other nutritional components, suggesting that it could be developed for food and food additives. To understand the effects of the nectar on human health, we investigated its chemical constituents. Two new flavonoid glycosides, cameretiins A and B (1 and 2), and two known flavonoid glycosides, kaempferol 3-O-(2''-O-E-p-coumaroyl)-ß-D-glucopyranoside (3) and tiliroside (4) were obtained from the nectar of Camellia reticulata Lindl. Their structures were determined based on analysis of their spectroscopic data and by comparison with 1D NMR spectroscopic data of known compounds reported in the literature. Compounds (1-4) were first isolated from the nectar of Camellia reticulata Lindl.


Subject(s)
Camellia , Glycosides , Camellia/chemistry , Flavonoids/chemistry , Glycosides/chemistry , Humans , Molecular Structure , Plant Nectar
16.
Burns Trauma ; 10: tkac051, 2022.
Article in English | MEDLINE | ID: mdl-36601058

ABSTRACT

Impaired wound healing is one of the severe complications of diabetes. Macrophages have been shown to play a vital role in wound healing. In different wound environments, macrophages are classified into two phenotypes: classically activated macrophages and alternatively activated macrophages. Dysregulation of macrophage phenotypes leads to severely impaired wound healing in diabetes. Particularly, uncontrolled inflammation and abnormal macrophage phenotype are important reasons hindering the closure of diabetic wounds. This article reviews the functions of macrophages at various stages of wound healing, the relationship between macrophage phenotypic dysregulation and diabetic wound healing and the mechanism of macrophage polarization in diabetic wound healing. New therapeutic drugs targeting phagocyte polarization to promote the healing of diabetic wounds might provide a new strategy for treating chronic diabetic wound healing.

17.
Pol J Microbiol ; 70(4): 511-520, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34970318

ABSTRACT

This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.


Subject(s)
Bees , Gastrointestinal Microbiome , Prebiotics , Probiotics , Synbiotics , Animals , Bees/microbiology , Bifidobacterium/physiology , Fermentation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/microbiology , Glucose/pharmacology , Lactobacillus/physiology , Oligosaccharides/pharmacology , Probiotics/pharmacology , Synbiotics/analysis
18.
Front Endocrinol (Lausanne) ; 12: 744868, 2021.
Article in English | MEDLINE | ID: mdl-34721299

ABSTRACT

Diabetic foot ulcer (DFU) is a combination of neuropathy and various degrees of peripheral vasculopathy in diabetic patients resulting in lower extremity infection, ulcer formation, and deep-tissue necrosis. The difficulty of wound healing in diabetic patients is caused by a high glucose environment and various biological factors in the patient. The patients' skin local microenvironment changes and immune chemotactic response dysfunction. Wounds are easy to be damaged and ulcerated repeatedly, but difficult to heal, and eventually develop into chronic ulcers. DFU is a complex biological process in which many cells interact with each other. A variety of growth factors released from wounds are necessary for coordination and promotion of healing. Fibroblast growth factor (FGF) is a family of cell signaling proteins, which can mediate various processes such as angiogenesis, wound healing, metabolic regulation and embryonic development through its specific receptors. FGF can stimulate angiogenesis and proliferation of fibroblasts, and it is a powerful angiogenesis factor. Twenty-three subtypes have been identified and divided into seven subfamilies. Traditional treatments for DFU can only remove necrotic tissue, delay disease progression, and have a limited ability to repair wounds. In recent years, with the increasing understanding of the function of FGF, more and more researchers have been applying FGF-1, FGF-2, FGF-4, FGF-7, FGF-21 and FGF-23 topically to DFU with good therapeutic effects. This review elaborates on the recently developed FGF family members, outlining their mechanisms of action, and describing their potential therapeutics in DFU.


Subject(s)
Diabetic Foot/drug therapy , Fibroblast Growth Factors/therapeutic use , Animals , Fibroblast Growth Factors/physiology , Humans , Signal Transduction/drug effects , Wound Healing/drug effects
19.
J Inflamm Res ; 14: 5273-5290, 2021.
Article in English | MEDLINE | ID: mdl-34703268

ABSTRACT

Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.

20.
Oncogenesis ; 10(10): 66, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34611125

ABSTRACT

Molecular mechanisms underlying breast cancer lymph node metastasis remain unclear. Using single-cell sequencing, we investigated the transcriptome profile of 96,796 single cells from 15 paired samples of primary tumors and axillary lymph nodes. We identified nine cancer cell subclusters including CD44 + / ALDH2 + /ALDH6A1 + breast cancer stem cells (BCSCs), which had a copy-number variants profile similar to that of normal breast tissue. Importantly, BCSCs existed only in primary tumors and evolved into metastatic clusters infiltrating into lymph nodes. Furthermore, transcriptome data suggested that NECTIN2-TIGIT-mediated interactions between metastatic breast cancer cells and tumor microenvironment (TME) cells, which promoted immune escape and lymph node metastasis. This study is the first to delineate the transcriptome profile of breast cancer lymph node metastasis using single-cell RNA sequencing. Our findings offer novel insights into the mechanisms underlying breast cancer metastasis and have implications in developing novel therapies to inhibit the initiation of breast cancer metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...