Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Biochem Genet ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198021

ABSTRACT

Colorectal cancer (CRC) is a common human malignancy and the third leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) were considered to play important roles in the genesis and development of many tumors. In recent years, it has been observed that leukemia inhibitory factor (LIF) might be involved in the regulation of stemness in cancer cells. In this study, we observed that LIF could increase the spheroid formation and stemness marker expression (inculding Nanog and SOX2) in CRC cell lines, such as HCT116 and Caco2 cells. Meanwhile, we also observed that LIF could upregulate LncRNA H19 expression via PI3K/AKT pathway. Knockdown of the expression of LncRNA H19 could decrease the spheroid formation and SOX2 expression in LIF-treated HCT116 and Caco2 cells, and thereby LncRNA H19 knockdown could compensate for the stemness enhancement effects induced by LIF. Our results indicated that LncRNA H19 might participate in the stemness promotion of LIF in CRC cells.

2.
J Colloid Interface Sci ; 658: 267-275, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38104409

ABSTRACT

The rapid depletion of fossil fuels results in significant environmental pollution. Consequently, researching environmentally friendly and cost-effective electrocatalysts with exceptional oxygen evolution reaction (OER) capabilities holds immense importance in enhancing the efficient utilization of resources. In this paper, a straightforward and cost-effective method was employed to produce Fe-Ni alloy-supported N-doped carbon hollow nanospheres (FeNi/Mo2C/NC) using self-assembled molybdenum dopamine spheres (Mo-PDA-HS) as a substrate. The inclusion of iron and nickel addressed the issue of aggregation and collapse in Mo-PDA-HS nanostructures at high temperatures, while adjusting the electronic structure of the composites to achieve efficient OER activity. The composite displayed a low overpotential (η10 mA = 304 mV) and a minimal Tafel slope (41.8 mV/dec-1). This study introduces a simple strategy for constructing structurally robust and non-aggregating Mo2C nanostructures, along with a direct method for designing cost-effective and high-performance catalysts for OER.

3.
Small ; : e2308136, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054773

ABSTRACT

Nickel sulfides are promising anode candidates in sodium ion batteries (SIBs) due to high capacity and abundant reserves. However, their applications are restricted by poor cycling stability and slow reaction kinetics. Thus, mesoporous nickel sulfide microsphere encapsulated in nitrogen, sulfur dual-doped carbon (MNS@NSC) is prepared. The packaged structure and carbon matrix restrain the volume variation together, the N, S dual-doping improves the electronic conductivity and offers extra active sites for sodium storage. Ex-situ X-ray diffraction  appeals copper collector adsorbs polysulfide to inhibit the polysulfide accumulation and enhance conductivity. Moreover, the large subsurface attributed to C-S-S-C bonding further boosts pseudocapacitive capacity, conducive to charge transfer. As a result, MNS@NSC delivers a high reversible capacity of 640.2 mAh g-1 after 100 cycles at 0.1 A g-1 , an excellent rate capability (569.8 mAh g-1 at 5 A g-1 ), and a remained capacity of 513.8 mAh g-1 after undergoing 10000 circulations at 10 A g-1 . The MNS@NSC|| Na3 V2 (PO4 )3 full cell shows a cycling performance of specific capacity of 230.8 mAh g-1 after 100 cycles at 1 A g-1 . This work puts forward a valid strategy of combing structural design and heteroatom doping to synthesize high-performance nickel sulfide materials in SIBs.

4.
Int Immunopharmacol ; 124(Pt A): 110893, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37669598

ABSTRACT

Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP. In this study, we explored the function of MSP activated-γδT cells in HCC. Results demonstrated that the proportions of γδT cells in the peripheral blood of HCC patients and the level of IFN-γ in the serum were higher than in healthy controls. We also determined that γδT cells can bind MSP protein. MSP-activated γδT cells were shown to contain a specific CDR3δ2 sequence that supports the recognition of MSP by γδT cells. We determined that MSP is highly expressed in HCC, MSP-activated γδT cells in the peripheral blood of HCC patients express co-stimulatory molecules, and MSP-activated γδT cells directly killed HCC cells. In conclusion, we demonstrated that the novel protein ligand MSP activated γδT cells, leading to the killing of HCC cells through direct and indirect mechanisms. These findings could provide a potential new target for the clinical diagnosis and treatment of HCC and a foundation for clinical treatment strategies in HCC.

5.
Adv Sci (Weinh) ; 10(7): e2206580, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36592412

ABSTRACT

Hybrid cycloalkyl-alkyl side chains are considered a unique composite side-chain system for the construction of novel organic semiconductor materials. However, there is a lack of fundamental understanding of the variations in the single-crystal structures as well as the optoelectronic and energetic properties generated by the introduction of hybrid side chains in electron acceptors. Herein, symmetric/asymmetric acceptors (Y-C10ch and A-C10ch) bearing bilateral and unilateral 10-cyclohexyldecyl are designed, synthesized, and compared with the symmetric acceptor 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9 bis(ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5] pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10- diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (L8-BO). The stepwise introduction of 10-cyclohexyldecyl side chains decreases the optical bandgap, deepens the energy level, and enables the acceptor molecules to pack closely in a regular manner. Crystallographic analysis demonstrates that the 10-cyclohexyldecyl chain endows the acceptor with a more planar skeleton and enforces more compact 3D network packing, resulting in an active layer with higher domain purity. Moreover, the 10-cyclohexyldecyl chain affects the donor/acceptor interfacial energetics and accelerates exciton dissociation, enabling a power conversion efficiency (PCE) of >18% in the 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6) (PM6):A-C10ch-based organic solar cells (OSCs). Importantly, the incorporation of Y-C10ch as the third component of the PM6:L8-BO blend results in a higher PCE of 19.1%. The superior molecular packing behavior of the 10-cyclohexyldecyl side chain is highlighted here for the fabrication of high-performance OSCs.

6.
Front Pharmacol ; 13: 962863, 2022.
Article in English | MEDLINE | ID: mdl-36278156

ABSTRACT

The novel coronavirus disease (COVID-19) caused by SARS-CoV-2 virus spreads rapidly to become a global pandemic. Researchers have been working to develop specific drugs to treat COVID-19. The main protease (Mpro) of SARS-CoV-2 virus plays a pivotal role in mediating viral replication and transcription, which makes it a potential therapeutic drug target against COVID-19. In this study, a virtual drug screening method based on the Mpro structure (Protein Data Bank ID: 6LU7) was proposed, and 8,820 compounds collected from the DrugBank database were used for molecular docking and virtual screening. A data set containing 1,545 drug molecules, derived from compounds with a low binding free energy score in the docking experiment, was established. N-1H-Indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine, ergotamine, antrafenine, dihydroergotamine, and phthalocyanine outperformed the other compounds in binding conformation and binding free energy over the N3 inhibitor in the crystal structure. The bioactivity and ADMET properties of these five compounds were further investigated. These experimental results for five compounds suggested that they were potential therapeutics to be developed for clinical trials. To further verify the results of molecular docking, we also carried out molecular dynamics (MD) simulations on the complexes formed by the five compounds and Mpro. The five complexes showed stable affinity in terms of root mean square distance (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bond. It was further confirmed that the five compounds had potential inhibitory effects on SARS-CoV-2 Mpro.

7.
Fungal Biol ; 126(6-7): 395-406, 2022.
Article in English | MEDLINE | ID: mdl-35667827

ABSTRACT

Leptographium qinlingensis is one of the major fungal associates of the Chinese white pine beetle (Dendroctonus armandi) and is an active participant in the large-scale death of Pinus armandi. Beetles and associated fungi have evolved efficient systems for overcoming the toxicity of host defense chemicals, which consist of a multitude of monoterpenes and diterpenes. As fungal cytochromes (CYPs) can detoxify and degrade various xenobiotic compounds, we identified 11 CYPs from L. qinlingensis to analyze their potential function in detoxifying or degrading host chemical defense. These 11 CYPs of L. qinlingensis belong to 6 clans and cluster into 3 clades, clade 2, clade 8 and clade 10, based on their phylogenetic relationships. Moreover, we also analyzed the transcript levels of CYPs following treatment with terpenes or expression in mycelia grown on terpenoids as a carbon source. The results in this paper showed that several CYPs were upregulated after treatment with terpenes or growth on terpenoids as the only carbon source. Our research provides some insight into the function of CYPs from bark beetle symbiotic fungi in the detoxification of pine defense compounds or their relationships with the utilization of terpenoids.


Subject(s)
Coleoptera , Ophiostomatales , Pinus , Animals , Carbon/metabolism , Cytochrome P-450 Enzyme System/genetics , Humans , Ophiostomatales/genetics , Phylogeny , Pinus/metabolism , Terpenes/metabolism , Terpenes/pharmacology
8.
Math Biosci Eng ; 19(1): 707-737, 2022 01.
Article in English | MEDLINE | ID: mdl-34903009

ABSTRACT

Singular point detection is a primary step in fingerprint recognition, especially for fingerprint alignment and classification. But in present there are still some problems and challenges such as more false-positive singular points or inaccurate reference point localization. This paper proposes an accurate core point localization method based on spatial domain features of fingerprint images from a completely different viewpoint to improve the fingerprint core point displacement problem of singular point detection. The method first defines new fingerprint features, called furcation and confluence, to represent specific ridge/valley distribution in a core point area, and uses them to extract the innermost Curve of ridges. The summit of this Curve is regarded as the localization result. Furthermore, an approach for removing false Furcation and Confluence based on their correlations is developed to enhance the method robustness. Experimental results show that the proposed method achieves satisfactory core localization accuracy in a large number of samples.


Subject(s)
Dermatoglyphics
10.
Clin Chem Lab Med ; 59(9): 1535-1546, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33882205

ABSTRACT

OBJECTIVES: Currently there is no validated method to predict renal reversal and recovery after acute kidney injury (AKI). As exosomes have the potential for AKI prognosis and CD26 is involved in the mechanisms in AKI, this study aims to investigate whether urinary exosomal CD26 is associated with renal-related outcomes and explore its prospect as a novel prognosis biomarker. METHODS: This was a single-center, prospective cohort study. A total of 133 AKI patients and 68 non-AKI patients admitted to ICU in Qilu Hospital Shandong University from January 2017 to January 2018. Urine samples were collected at enrollment and the relative expression of CD26 (CD26 percentage) in urinary exosomes was examined, that was then categorized into a low-CD26 level and a high-CD26 level. RESULTS: CD26 percentage was significantly lower in the AKI cohort than in the control cohort. Within the AKI cohort, a high-CD26 level was associated with lower incidence of major adverse kidney events within 90 days, but higher incidence of reversal within 28 days. In AKI survivors, a high-CD26 level had a 4.67-, 3.50- and 4.66-fold higher odds than a low-CD26 level for early reversal, recovery and reversal, respectively, after adjustment for clinical factors. Prediction performance was moderate for AKI survivors but improved for non-septic AKI survivors. CONCLUSIONS: Urinary exosomal CD26 is associated with renal reversal and recovery from AKI and is thus a promising prognosis biomarker.


Subject(s)
Acute Kidney Injury , Dipeptidyl Peptidase 4 , Acute Kidney Injury/etiology , Biomarkers/urine , Cohort Studies , Humans , Intensive Care Units , Prospective Studies
11.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766905

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major threat to global health. Here, we report the draft genome sequence of a Klebsiella pneumoniae clinical strain carrying mcr-8.1 and bla NDM-5.

12.
Front Neurosci ; 15: 761127, 2021.
Article in English | MEDLINE | ID: mdl-34975373

ABSTRACT

In this work, a memristive spike-based computing in memory (CIM) system with adaptive neuron (MSPAN) is proposed to realize energy-efficient remote arrhythmia detection with high accuracy in edge devices by software and hardware co-design. A multi-layer deep integrative spiking neural network (DiSNN) is first designed with an accuracy of 93.6% in 4-class ECG classification tasks. Then a memristor-based CIM architecture and the corresponding mapping method are proposed to deploy the DiSNN. By evaluation, the overall system achieves an accuracy of over 92.25% on the MIT-BIH dataset while the area is 3.438 mm2 and the power consumption is 0.178 µJ per heartbeat at a clock frequency of 500 MHz. These results reveal that the proposed MSPAN system is promising for arrhythmia detection in edge devices.

13.
Discov Med ; 32(165): 29-37, 2021.
Article in English | MEDLINE | ID: mdl-35219354

ABSTRACT

New biomarkers for early diagnosis and prognosis are important in improving the diagnosis of metastatic or recurrent prostate cancer. Recent studies have shown important roles of long non-coding RNAs (lncRNAs) in tumorigenesis. Here we provide a comprehensive review of lncRNAs implicated in prostate cancer and discuss their potential as novel biomarkers and therapeutic targets for prostate cancer. In particular, we focus on lncRNAs associated with the androgen/androgen receptor pathway and the epithelial-to-mesenchymal transition. Notably, several lncRNAs such as PCA3, PCAT18, HOTAIR, and CCAT2 are prostate cancer-specific in that they are only upregulated in prostate cancer, and consequently they are promising biomarkers for use in clinical practice.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Male , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Long Noncoding/genetics
14.
Front Oncol ; 10: 421, 2020.
Article in English | MEDLINE | ID: mdl-32318337

ABSTRACT

Prostate cancer is a common malignant tumor and the second leading cause of cancer-related death in men. Radiation therapy is a curative treatment for localized prostate cancer and has a limited effect for castration-resistant prostate cancer (CRPC). Interleukin 24 (IL-24) has a radiosensitizing effect in cancer cells. Our previous studies showed that ZD55-IL-24, an oncolytic adenovirus harboring IL-24, had better anti-tumor effect with no toxicity to normal cells. In this study, we evaluated the synergistic anti-tumor effect of oncolytic adenovirus ZD55-IL-24 combined with radiotherapy in prostate cancer. In Vitro and In Vivo experiments showed that the combined therapy significantly inhibited the growth of prostate cancer and provoked apoptosis of prostate cancer cells. In conclusion, the combination of ionizing radiation and oncolytic adenovirus expressing IL24 could achieve synergistic anti-tumor effect on prostate cancer, and is a promising strategy for prostate cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...