Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(4): 1909-1922, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38258992

ABSTRACT

Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.


Subject(s)
Lipopolysaccharides , MicroRNAs , Triterpenes , Animals , Mice , Ovalbumin , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/drug therapy , Inflammation/genetics , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism
2.
J Cancer ; 14(15): 2759-2770, 2023.
Article in English | MEDLINE | ID: mdl-37781083

ABSTRACT

Acidic leucine rich nuclear phosphoprotein-32A (ANP32A) protein has a variety of functions, such as regulating cell differentiation, influencing cell apoptosis and cell cycle progression. Our previous study demonstrated that high expression of ANP32A was found in the tumor tissues of colorectal cancer (CRC) patients and was positively associated with tumor grading. However, the function and underlying mechanisms of ANP32A in CRC metastasis have not been fully explored. In this study, we found that ANP32A knockdown significantly attenuated the migration and invasion, and epithelial-mesenchymal transition (EMT) in cells. Further mechanistic studies revealed that ANP32A knockdown inhibited the expression of ß-catenin and phosphorylated-ERK. The immunofluorescent staining experiment has revealed that ANP32A was expressed in the cell membrane, cytosol and nucleus, and its expression was positively associated with ß-catenin expression levels. Moreover, the ability of cell migration and invasion was inhibited, the expression of E-cadherin was enhanced following ANP32A knockdown, and these affects were abolished by an ERK activator PMA, enhanced by an ERK inhibitor PD98059. Moreover, our animal experiment also demonstrated that silenced ANP32A inhibited CRC cell growth, multi-organ metastasis, ERK activation and EMT progression in vivo. Collectively, these findings demonstrated that ANP32A promotes CRC progression and that may be a promising target for the anti-metastasis treatment of CRC.

3.
Phytomedicine ; 115: 154833, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37137203

ABSTRACT

BACKGROUND & AIMS: Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS: In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION: The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.


Subject(s)
Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Autophagy , RNA-Binding Motifs , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Cell Proliferation , Nucleolin
4.
Oxid Med Cell Longev ; 2022: 8585598, 2022.
Article in English | MEDLINE | ID: mdl-35720178

ABSTRACT

Osthole is a natural coumarin which has been proved to inhibit growth of cancer cells by inducing cell death, while its mechanism was considered to be just caused by apoptosis. In our study, we found that osthole activated not just apoptosis, but also pyroptosis which is a form of regulated cell death accompanied by loss of cell membrane integrity and lactate dehydrogenase (LDH) release. Caspase-3 is a key protein of apoptosis as well as pyroptosis. The apoptosis and pyroptosis induced by osthole were all inhibited by irreversible caspase-3 inhibitor Z-DEVD-FMK. Meanwhile, knockdown of gasdermin E (GSDME) only reduced the osthole-induced pyroptosis but did not affect the occurrence of apoptosis. Our proteomic analysis revealed that the expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) was decreased in osthole-treated cells. Moreover, NQO1 inhibition by osthole induced the overproduction of reactive oxygen species (ROS), as well as apoptosis and pyroptosis. ROS inhibitor N-Acetyl-L-cysteine (NAC) not only reduced osthole-induced apoptosis but also reversed its effect on the pyroptosis. Meanwhile, knockdown of NQO1 by si-NQO1 or its inhibitor dicoumarol (DIC) not only enhanced ROS generation but also strengthened the GSDME-mediated pyroptosis. Finally, we demonstrated that osthole inhibited tumor growth and the expression of NQO1 in a HeLa xenograft mode. Similar to the results in vitro, osthole stimulated the activation of caspase-3, PARP, and GSDME in vivo. Taken together, all these data suggested that osthole induced apoptosis and caspase-3/GSDME-mediated pyroptosis via NQO1-mediated ROS accumulation.


Subject(s)
Proteomics , Pyroptosis , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Coumarins/pharmacology , HeLa Cells , Humans , NAD(P)H Dehydrogenase (Quinone) , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism
5.
Front Immunol ; 13: 800143, 2022.
Article in English | MEDLINE | ID: mdl-35371026

ABSTRACT

Mogroside V is a bioactive ingredient extracted from the natural food Siraitia grosvenorii which possesses functions that stimulate lung humidification and cough relief activities, but its underlying mechanisms were rarely studied. To estimate its potential protective effect on ovalbumin (OVA)-induced pulmonary inflammation and understand its system-wide mechanism, integrated omics was applied in this study. Mogroside V effectively reduced the levels of IgE, TNF-α, and IL-5 in OVA-induced mice. The results of RNA-seq and data-independent acquisition proteomics approach revealed that 944 genes and 341 proteins were differentially expressed in the normal control group (NC) and ovalbumin-induced control group (OC) and 449 genes and 259 proteins were differentially expressed between the OC and the group treated with 50 mg/kg mogroside V (MV). After a combined analysis of the transcriptome and the proteome, 93 major pathways were screened, and we discovered that mogroside V exerts an anti-inflammation effect in the lung via NF-κB and JAK-STAT, both of which are among the signaling pathways mentioned above. In addition, we found that the key regulatory molecules (Igha, Ighg1, NF-κB, Jak1, and Stat1) in the two pathways were activated in inflammation and inhibited by mogroside V. Thus, mogroside V may be the main bioactivity component in S. grosvenorii that exerts lung humidification and cough relief effects.


Subject(s)
Pneumonia , Transcriptome , Animals , Cough , Mice , NF-kappa B/metabolism , Ovalbumin/adverse effects , Pneumonia/drug therapy , Proteomics , Triterpenes
6.
Mol Immunol ; 145: 80-87, 2022 05.
Article in English | MEDLINE | ID: mdl-35305534

ABSTRACT

BACKGROUND: For a long time, Siraitia grosvenorii fruit extract (SGFE) and its dominant compounds, mogroside V(MV) were both reported to have therapeutic effects on allergic pneumonia, while previous studies only stay on phenotype and mechanism of the two active ingredients, hardly have any studies compared the two ingredients on the effect of liver metabolic, and revealed the relationship between mechanism and liver metabolism. OBJECTIVE: Here we elucidated and compared the curative mechanisms of SGFE and MV on allergic pneumonia through liver metabolomics. METHODS: We established allergic pneumonia mice using ovalbumin, then treated the mice with SGFE, MV and positive drug of Suhuang Zhike Jiaonang. The effects of the drugs were evaluated by detecting inflammatory cytokines, pathological examination and liver oxidative stress biomarkers. We explored the metabolic features between SGFE and MV through liver metabolomics consequently. RESULTS: At phenotype, we confirmed that MV and SGFE both inhibited the expression of inflammatory cytokines including interleukins-5 (IL-5), IL-13, IL-17 and OVA-induced immunoglobulin E, which can also relieve inflammatory cells infiltration and mesenchymal thickening in lung tissue compared with positive drug. In addition, both of them can alleviate oxidative stress damage in liver, while MV showed a superior effect than SGFE. In metabolomic analysis, the two ingredients were found to ameliorate inflammatory and oxidative reaction mainly in controlling pathways of Riboflavin metabolism and Glutathione metabolism. While SGFE were found to control other metabolic pathways such as Phenylalanine metabolism, Sphingolipid metabolism, Glycerollipid metabolism, Glycine, serine and threonine metabolism and Arginine and proline metabolism. CONCLUSION: From the results we can infer that the minor ingredients except MV in SGFE contribute poor function to the treatment of allergic pneumonia and MV may be the main functional constituent that relieve allergic pneumonia in SGFE. This study will be beneficial to figuring out a systematic theory of Siraitia grosvenorii active ingredients and proposing a guidance for pharmacology development.


Subject(s)
Fruit , Pneumonia , Animals , Cytokines , Liver , Mice , Plant Extracts/pharmacology , Pneumonia/chemically induced , Triterpenes
7.
Phytother Res ; 35(12): 7004-7017, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34750896

ABSTRACT

Autophagy is usually considered as a protective mechanism against cell death, and in the meantime, leads to cell injury even apoptosis. Apoptosis and autophagy are very closely connected and may cooperate, coexist, or antagonize each other on progressive occurrence of cell death triggered by natural compounds. Therefore, the interplay between the two modes of death is essential for the overall fate of cancer cells. Our previous study revealed that curcumol induced apoptosis in nasopharyngeal carcinoma (NPC) cells. Recently, curcumol was found to induce autophagy in cancer cells. However, whether curcumol can induce NPC cells autophagy and the effects of autophagy on apoptosis remain elusive. In this study, we found that curcumol induced autophagy through AMPK/mTOR pathway in CNE-2 cells. Moreover, inhibiting autophagy by autophagy inhibitor 3-methyladenine (3-MA) or apoptosis inhibitor z-VAD-fmk significantly increased proliferation while attenuated apoptosis and autophagy compared with the curcumol 212 µM group. In contrast, combining curcumol with autophagy agonist rapamycin and apoptosis inducer MG132 synergized the apoptotic and autophagic effect of curcumol. Taken together, our study demonstrates that curcumol promotes autophagy in NPC via AMPK/mTOR pathway, induces autophagy enhances the activity of curcumol in NPC cells; the combination of autophagy inducer and curcumol can be a new therapeutic strategy for NPC.


Subject(s)
Nasopharyngeal Neoplasms , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Sesquiterpenes
8.
Phytomedicine ; 91: 153682, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34483017

ABSTRACT

BACKGROUND: Mogroside V, the main ingredient of Siraitia grosvenorii, has been proved to have therapeutic effects on pulmonary diseases. The specific mechanism still remains to be clarified, which hinders the potence of its medicinal value. PURPOSE: Serum and lung metabolomics based on LC-MS analysis were applied to explore the mechanism of mogroside V against lung inflammation. METHOD: In this study, balb/c mice were divided into control, model, mogeoside V and SH groups. We evaluated the protective effects of mogroside V on lung inflammation in asthmatic mice. Suhuang Zhike Jiaonang was used as positive drug. Metabolic profiles of serum and lung samples of mice in control, model and mogroside V groups were analyzed by LC-MS. RESULTS: Administration of mogroside V effectively relieved the expression of biochemical cytokines and lung inflammatory infiltration of asthmatic mice caused by ovalbumin (OVA). And visceral index of mice treated with mogroside V was close to control group. These results indicated that mogroside V ameliorated OVA-induced lung inflammation. LC-MS based metabolomics analysis demonstrated 6 main pathways in asthmatic mice including Vitamin B6 metabolism, Taurine and hypotaurine metabolism, Ascorbate and aldarate metabolism, Histidine metabolism, Pentose and glucuronate interconversions, Citrate cycle (TCA cycle) were regulated after using mogroside V. CONCLUSION: The study firstly elucidates the metabolic pathways regulated by mogroside V on lung inflammation through metabolomics, providing a theoretical basis for more sufficient utilization and compatibility of mogroside V.


Subject(s)
Metabolomics , Pneumonia , Triterpenes/pharmacology , Animals , Inflammation/chemically induced , Inflammation/drug therapy , Lung , Mice , Mice, Inbred BALB C , Ovalbumin , Pneumonia/chemically induced , Pneumonia/drug therapy
9.
Biochem Pharmacol ; 192: 114742, 2021 10.
Article in English | MEDLINE | ID: mdl-34428442

ABSTRACT

Metastasis is a major cause of recurrence and death in patients with EBV-positive Nasopharyngeal carcinoma (NPC). Previous reports documented that curcumol has both anti-cancer and anti-viral effects, but there is little literature systematically addressing the mechanism of curcumol in EBV-positive tumors. Previously we found that nucelolin (NCL) is a target protein of curcumol in CNE2 cells, an EBV-negative NPC, and in this experiment, we reported a critical role for NCL in promoting migration and invasion of C666-1 cells, an EBV-positive NPC, and found that the expression of NCL determined the level of curcumol's efficacy. Mechanistically, NCL interacted with Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) to activate VEGFA/VEGFR1/PI3K/AKT signaling pathway, which in turn promoted NPC cell invasion and metastasis. Moreover, further study showed that the differential expression of NCL and curcumol intervention only had a regulatory effect on the nuclear accumulation of VEGFR1, which strengthened the anti-cancer effect of curcumol mediated through NCL. Our findings indicated that curcumol exerted anti EBV-positive NPC invasion and metastasis by downregulating EBNA1 and inhibiting VEGFA/VEGFR1/PI3K/AKT signaling by targeting NCL, which provides a novel pharmacological basis for curcumol's clinical use in treating patients with EBV-positive NPC.


Subject(s)
Cell Movement/drug effects , Drugs, Chinese Herbal/therapeutic use , Herpesvirus 4, Human/drug effects , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Sesquiterpenes/therapeutic use , Animals , Cell Line, Tumor , Cell Movement/physiology , Drugs, Chinese Herbal/pharmacology , Epstein-Barr Virus Nuclear Antigens/biosynthesis , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/pathology , Sesquiterpenes/pharmacology
10.
Oncol Lett ; 21(4): 299, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33732375

ABSTRACT

MicroRNA-30a-5p (miR-30a-5p), which functions as a tumor suppressor, has been reported to be downregulated in colorectal cancer (CRC) tissues and to be associated with cancer invasion. However, the detailed regulatory mechanism of curcumol in the malignant progression of CRC remains unknown. MTT, Transwell, scratch, western blotting and reverse transcription-quantitative PCR assays were performed to examine how curcumol inhibited CRC cell viability, invasion and migration, and to detect the role of miR-30a-5p and curcumol in the invasion and Hippo signaling pathways of CRC cells. The present study revealed that miR-30a-5p expression was downregulated in human CRC tissues and cells. The results demonstrated that miR-30a-5p downregulation was accompanied by the inactivation of the Hippo signaling pathway, which was demonstrated to promote CRC cell viability, invasion and migration. Curcumol treatment was identified to increase miR-30a-5p expression and to activate the Hippo signaling pathway, which in turn inhibited the invasion and migration of CRC cells. Overexpression of miR-30a-5p enhanced the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. Furthermore, downregulation of miR-30a-5p reversed the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. These findings identified novel signaling pathways associated with miR-30a-5p and revealed the effects of curcumol on miR-30a-5p expression. Therefore, curcumol may serve as a potential therapeutic strategy to delay CRC progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...