Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2406841, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206766

ABSTRACT

The passive sensing and active control of electromagnetic (EM) waves have always been attractive in electronic and information areas, especially during the intelligent era. Here a new method is presented to achieve the angle sensing of incident wave and adaptive control of backward scattering using the intelligent metasurface. The proposed unit cells have the ability to dynamically manipulate the receiving and reflection of the EM energy respectively. The angle sensing of incident waves can be actualized using the method of compressive sensing based on multiple receiving patterns, which are generated by randomly switching the receiving and reflection states of the unit cells. Afterward, the customized performances of backward scattering waves according to the cognitive incident angle can be realized by controlling the programmable reflective phases of unit cells correspondingly. One prototype composed of the metasurface and the module for sensing and adaptive feedback control is fabricated. The whole intelligent metasurface with customizing the function of retro-reflection or low scattering is measured without human intervention and the good results acquired can verify the validity of the proposed concept and design.

2.
ACS Appl Mater Interfaces ; 16(4): 5234-5244, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241202

ABSTRACT

The electromagnetic (EM) beam manipulations such as spatial scanning have always been the focus in information science and technology. Generally, the transmitting and receiving (T/R) beams of the same aperture should be coincident due to the reciprocal theory, and hence, more flexible controls of the spatial information are limited accordingly. Here, we propose a new approach to achieve independent controls of beam scanning in spatial T/R channels based on one aperture made by a nonreciprocal programmable metasurface. The meta-atom is designed to have independent propagation chains for T/R waves by introducing dual-direction power amplifiers (PAs) as the isolators for one-way transparency. A programmable phase shifter with a 360° coverage is loaded with the PA device in the transmitting or receiving chain to realize independent beam scanning in the T/R channels. A prototype of the proposed metasurface is fabricated, and independent beam scanning in the T/R channels is directly acquired with good performance in our measurements. In addition, a proof of concept of integrated sensing and auxiliary communications is accomplished to verify the validity of the presented method.

3.
Opt Express ; 31(15): 24412-24422, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475269

ABSTRACT

In the area of manipulating the spatial electromagnetic (EM) waves fields, the metasurfaces have become much more attractive and powerful in recent years. Here, we propose a design to realize the simultaneous control of spatial fundamental and harmonic EM waves applying nonlinear metasurfaces in microwave band. The proposed meta-atom composed of three topological layers which are transmitting antenna, nonlinear wave guiding and receiving antenna respectively. And the critical factor of generating the harmonic is the nonlinear chip which is integrated into the middle layer. The microstrip power divider and phase shifter in each meta-atom are preciously tailored to actualize the spatial control of the fundamental and harmonic transmission beams in the far field. One prototype of the nonlinear metasurfaces is fabricated and corresponding radiation patterns of fundamental and harmonic modes are observed very well in the experience that can verify the validity of our proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL