Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 65(8): 651-657, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-36659134

ABSTRACT

The direct hydrogenation of CO2 using H2 gas is a one-stone-two-birds route to produce highly value-added hydrocarbon compounds and to lower the CO2 level in the atmosphere. However, the transformation of CO2 and H2 into hydrocarbons has always been a great challenge while ensuring both the activity and selectivity over abundant-element-based nanocatalysts. In this work, we designed a Schottky heterojunction composed of electron-rich MoC nanoparticles embedded inside an optimized nitrogen-doped carbon support (MoC@NC) as the first example of noble-metal-free heterogeneous catalysts to boost the activity of and specific selectivity for CO2 hydrogenation to formic acid (FA) in liquid phase under mild conditions (2 MPa pressure and 70 °C). The MoC@NC catalyst with a high turnover frequency (TOF) of 8.20 molFA molMoC-1 h-1 at 140 °C and an excellent reusability are more favorable for real applications.

2.
J Am Chem Soc ; 141(1): 38-41, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30525578

ABSTRACT

Highly efficient fixation of CO2 for the synthesis of useful organic carbonates has drawn much attention. The design of sustainable Lewis acid-base pairs, which has mainly relied on expensive organic ligands, is the key challenge in the activation of the substrate and CO2 molecule. Here, we report the application of Mott-Schottky type nanohybrids composed of electron-deficient Cu and electron-rich N-doped carbon for CO2 fixation. A ligand-free and additive-free method was used to boost the basicity of the carbon supports and the acidity of Cu by increasing the Schottky barrier at their boundary, mimicking the beneficial function of organic ligands acting as the Lewis acid and base in metal-organic frameworks (MOFs) or polymers and simultaneously avoiding the possible deactivation associated with the necessary stability of a heterogeneous catalyst. The optimal Cu/NC-0.5 catalyst exhibited a remarkably high turnover frequency (TOF) value of 615 h-1 at 80 °C, which is 10 times higher than that of the state-of-the-art metal-based heterogeneous catalysts in the literature.

3.
Chem Commun (Camb) ; 53(76): 10544-10547, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28890982

ABSTRACT

The oxygen evolution reaction (OER) is the rate-limiting process for water splitting, and highly efficient large-area OER photoanodes have been considered as an essential part in photoelectrochemical water splitting reactors. The high hole-electron separation efficiency of photoanodes is highly required for real applications of photoanodes in sufficiently harvesting solar energy. Herein we show that the inactive g-C3N4 nanolayers can be self-assembled with BiVO4 into a highly coupled BV/CN dyad to significantly enhance the charge separation efficiency of BiVO4 photoelectrodes for the OER. The incident photon-to-current conversion efficiency (IPCE) of visible light (400 nm) provided by the scalable BV/CN-5 photoanode was estimated to be 50% at 1.23 V vs. RHE in 0.5 M Na2SO4 solution and significantly increased to 97% at a bias voltage of 1.6 V vs. RHE.

SELECTION OF CITATIONS
SEARCH DETAIL
...