Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 42-47, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836682

ABSTRACT

This study aimed to explore the mechanism of action of LINC01133 in non-small cell lung cancer. LINC01133 expression in NSCLC patient tissues and cells was detected by qRT-PCR. After transfecting siRNA-LINC01133 in NSCLC cells, the proliferation and invasive migration ability of the cells were assessed via CCK-8 and Transwell assay, respectively. The sublocalization of LINC01133 in NSCLC cells was analyzed by bioinformatics prediction and nucleoplasm separation assay and RNA-FISH assay. Analysis of the binding relationship between LINC01133, FOXA1 and miR-30b-5p was all through bioinformatics website analysis, dual-luciferase reporter and RNA Pulldown assay. Functional rescue experiments confirmed the character of miR-30b-5p and FOXA1 in LINC01133 regulating the NSCLC cells biological behavior. LINC01133 high expressions were found in NSCLC tissues and cells. siRNA-LINC01133 treatment inhibited NSCLC cells malignant behavior. Mechanistically: LINC01133 promoted FOXA1 expression through adsorption binding of miR-30b-5p. Knocking down miR-30b-5p expression or up-regulating FOXA1 expression was able to reverse siRNA-LINC01133 inhibitory effect of tumor cell malignant behavior. LINC01133 promoted FOX1 expression by competitively binding miR-30b-5p, which attenuated the targeting inhibitory effect of miR-30b-5p on FOXA1 and ultimately promoted proliferation and invasive migration of NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Phenotype , Signal Transduction/genetics
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 54-60, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836681

ABSTRACT

Long non-coding RNA (lncRNA) LINC00472 has a close connection with the development of tumors. The aim was to explore the role of LINC00472 on NSCLC cell biological function in vivo and its potential mechanisms. The mRNA levels of LncRNA 00472 and microRNA-23a-3p, were determined by RT-qPCR. Cell Counting Kit-8, cell scratches and western blot assays were used to analyze the proliferation, migration and level of apoptosis-associated proteins. Luciferase reporter assay validates the binding between LINC00472/CCL22 and miR-23a-3p. LINC00472 and CCL22 were lowly expressed in NSCLC tissues and cells, while miR-23a-3p expression was upregulated. LINC00472 overexpression significantly depressed NSCLC cell cellular behavior, whereas promoting cell death. MiR-23a-3p could reverse these above-mentioned biological behavior changes caused by LINC00472 overexpression. Additionally, LINC00472 increased CCL22 expression through sponging miR-23a-3p. Knocking down CCL22 antagonized the inhibitory effect of LINC00472 on NSCLC cell survival. LINC00472 may reduce the cellular growth, and accelerate death of NSCLC through increasing CCL22 expression by targeting miR-23a-3p.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Chemokine CCL22 , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Chemokine CCL22/genetics , Chemokine CCL22/metabolism , Apoptosis/genetics , Cell Movement/genetics , Disease Progression , Male , Female , Animals
3.
Toxics ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787107

ABSTRACT

The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1ß, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.

4.
Pharmaceutics ; 16(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38794264

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.

5.
Genes Genomics ; 45(4): 507-517, 2023 04.
Article in English | MEDLINE | ID: mdl-36306063

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality in the world. Growth and differentiation factor 15 (GDF15) has been proved to play an important role in regulating tumor progression. However, the influence of GDF15 on NSCLC remains unclear. OBJECTIVE: We aimed to investigate the regulatory role of GDF15 in NSCLC. METHODS: The correlation between GDF15 expression and prognosis, stage of NSCLC was examined with bioinformatics method. The cell proliferation was detected with CCK8 and EdU staining. Wound healing, Transwell, flow cytometry assays were used to measure cell migration, invasion, and apoptosis, respectively. RESULTS: High expression of GDF15 is correlated with worse survival and malignant progression of NSCLC. Knockdown of GDF15 restrained the proliferation, invasion, migration, but accelerated apoptosis of lung cancer cells through regulating PTEN/PI3K/AKT signaling pathway. sh-GDF15 suppressed epithelial mesenchymal transition (EMT) process and promoted the chemotherapy sensitivity of lung cancer cells. CONCLUSION: GDF15 plays an important role in NSCLC progression. GDF15 mediated PTEN/PI3K/AKT signaling pathway might be the potential therapeutic targets for the prevention and treatment of GDF15.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , PTEN Phosphohydrolase/genetics
6.
Dis Markers ; 2022: 2483816, 2022.
Article in English | MEDLINE | ID: mdl-36277984

ABSTRACT

Objective: To compare the clinical efficacy and long-term survival between anlotinib monotherapy and anlotinib plus docetaxel in patients with lung carcinoma. Methods: Between October 2019 and December 2021, 84 patients with lung cancer diagnosed and treated at our hospital were enrolled and randomly allocated to the control (n = 42) and experimental (n = 42) groups. Patients in the control group only received anlotinib, whereas those in the experimental group were administered both anlotinib and docetaxel. The clinical effectiveness, long-term survival, and other associated variables of the two groups were compared. Results: There were no CR cases, 7 PR cases, 22 SD cases, and 13 PD cases in the control group. In the experimental group, there were 4 cases of CR, 20 cases of CR, 11 cases of SD, and 7 cases of PD. The overall clinical effectiveness of the experimental group was much higher than that of the control group. There were 3 cases of anemia, 5 cases of pyrexia, 6 cases of proteinuria, 9 cases of nausea and vomiting, and 4 cases of abnormal liver and renal function in the control group. (P < 0.05). In the experimental group, there were 2 cases of anemia, 3 cases of pyrexia, 1 case of proteinuria, 5 cases of nausea and vomiting, and 1 case of abnormal liver and kidney function. The incidence of adverse reactions in the experimental group was significantly lower than in the control group (64.29%) (P < 0.05). According to the two-year follow-up results, the survival rate was 19.05% in the control group and 54.76% in the experimental group, and the mortality rate was 80.95% in the control group and 45.24% in the experimental group. The experimental group had a significantly higher survival rate than the control group (P < 0.05). Conclusion: Anlotinib combined with docetaxel is a safe and effective treatment for lung carcinoma to reduce the incidence of adverse reactions and improve the long-term survival rate. These benefits make it worthy of a broader clinical application. Although pharmacological treatment was applied in this study based on the mechanism, specific bioeffective markers are yet to be identified, presenting a direction for future research.


Subject(s)
Carcinoma , Lung Neoplasms , Humans , Docetaxel/therapeutic use , Fever , Lung/pathology , Lung Neoplasms/pathology , Nausea , Proteinuria , Treatment Outcome , Vomiting
7.
Comput Intell Neurosci ; 2022: 9811905, 2022.
Article in English | MEDLINE | ID: mdl-36082356

ABSTRACT

Objective: To investigate hypoxia-induced Nestin regulates lung cancer viability and metabolism by targeting transcription factors Nrf2, STAT3, and SOX2. Methods: Eighty-four cases of nonsmall cell lung cancer (nonsmall cell lung cancer, NSCLC), which had been treated from June 2020 to February 2021, were randomly selected from our clinicopathology database. Immunohistochemical staining of collected tissue cells was performed to assess the expression patterns of Nestin, STAT3, Nrf2, and SOX2. Data were quantified and statistically analyzed using one-way and two-way ANOVA tests with P < 0.05. Results: Clinicopathological findings showed significant differences in lymph node metastasis, tissue differentiation, and histology on induction of Nestin expression; Nestin expression correlated with STAT3, Nrf2, and SOX2 expression.Nestin/STAT3/SOX2/Nrf2 are involved in angiogenesis and lung cancer development. Conclusion: Hypoxia-induced Nestin promotes the progression of nonsmall lung cancer cells by targeting the downstream transcription factors STAT3, Nrf2, and SOX2.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Hypoxia , NF-E2-Related Factor 2/metabolism , Nestin/genetics , Nestin/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism
8.
Front Genet ; 13: 938787, 2022.
Article in English | MEDLINE | ID: mdl-35923704

ABSTRACT

Objective: This study aimed to evaluate the associations between endoplasmic reticulum (ER) stress-related genes EIF2AK3/PERK, HSPA5/GRP78, and DDIT3/CHOP polymorphisms and the risk of lung cancer. Methods: Six single-nucleotide polymorphisms (SNPs) of EIF2AK3, HSPA5, and DDIT3 were genotyped in 620 cases and 620 controls using a MassARRAY platform. Results: The minor allele A of rs6750998 was a protective allele against the risk of lung cancer (p < 0.001), while the minor alleles of rs867529, rs391957, and rs697221 were all risk alleles that may lead to multiplied risk of the disease (rp rs867529 = 0.002; p rs391957 = 0.015; p rs697221 < 0.001). Moreover, the rs6750998-TA/AA genotypes were protective genotypes against the risk of lung cancer (p = 0.005); however, the rs867529-GC/CC, rs391957-CC, and rs697221-GA/AA genotypes were associated with elevated lung cancer risk (p rs867529 = 0.003, p rs391957 = 0.028, and p rs697221 = 0.0001). In addition, EIF2AK3-rs6750998 was associated with a decreased risk of lung cancer under dominant, recessive, and log-additive models (p < 0.05). By contrast, the EIF2AK3-rs867529 was correlated with an increased risk of the disease under dominant and log-additive models (p = 0.001). Moreover, HSPA5-rs391957 was related to an elevated risk of the disease under recessive and log-additive models (p < 0.02). DDIT3-rs697221 was identified to have a significant association with the risk of lung cancer under all three genetic models (p < 0.01). Conclusion: Our results provide new insights on the role of the ER stress-related genes EIF2AK3, HSPA5, and DDIT3 polymorphisms for lung cancer risk.

9.
J Oncol ; 2022: 3434430, 2022.
Article in English | MEDLINE | ID: mdl-35607321

ABSTRACT

Objective: To evaluate the clinical efficacy of single-port thoracoscopic lobectomy versus three-port thoracoscopic lobectomy for lung cancer. Methods: From February 2020 to February 2021, 200 lung cancer patients treated in our institution assessed for eligibility were enrolled and randomly assigned (1 : 1) to either the experimental group (single-port thoracoscopic lobectomy) or the control group (three-port thoracoscopic lobectomy). The outcomes were the eligible patients' surgical indices, pain stress indexes, and postoperative complications. Results: The experimental group outperformed the control group in terms of incision length, postoperative drainage time, extubation time, time to get out of bed, time to analgesics administration, and postoperative pain score (P < 0.001). Compared with the control group, the experimental group reduced the intraoperative bleeding (161.98 ± 10.65 versus 179.65 ± 14.20, P < 0.001) and length of hospital stay (7.98 ± 0.56 versus 10.46 ± 1.23, P < 0.001). The operative time of the single-port thoracoscopic lobectomy was longer than that of the three-port thoracoscopic lobectomy (P < 0.001). There was no statistical difference between the two groups in the intraoperative conversion to thoracotomy and the number of lymph node dissections (P > 0.05). Postoperative pain stress indices and complication rates of the experimental group were significantly lower than those of the control group (P < 0.001). Conclusion: Single-port thoracoscopic lobectomy can improve the perioperative indices of lung cancer patients, reduce their pain stress response, and accelerate postoperative recovery. However, its operation is difficult and time-consuming, requiring experienced surgeons for improved surgical outcomes in practice.

10.
Int Immunopharmacol ; 108: 108763, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35430434

ABSTRACT

BACKGROUND: The COX/PGE2 pathway is widely involved in the development of tumors and the regulation of tumor immune cells such as T cells, NK cells and DCs. However, little information is available on the single nucleotide polymorphisms (SNPs) of COX/PGE2 pathway-related genes in patients with lung cancer. METHODS: Seven SNPs of the PTGS2, PTGER2 and PTGIS genes were genotyped in a case-control cohort including 600 lung cancer cases and 600 controls using the MassARRAY platform. RESULTS: The minor alleles of PTGS2-rs4648298, PTGS2-rs2745557, PTGER2-rs2075797 and PTGIS-rs6125671 were all risk alleles that led to a different degree of elevated lung cancer risk (p < 0.001). The rs4648298-TC/CC, rs2745557-GA/AA, rs2075797-CG/GG and rs6125671-TC/CC genotypes were markedly associated with an elevated risk of lung cancer (p < 0.0001). Moreover, genetic model results showed that PTGS2-rs4648298 was correlated with a 4.91-, 6.90- and 4.21-fold increased risk of lung cancer under dominant, recessive and log-additive models, respectively (p < 0.0001). Similarly, PTGS2-rs2745557, PTGER2-rs2075797 and PTGIS-rs6125671 were also related to an elevated risk of the disease under the three genetic models (p < 0.001). In addition, stratification analysis based on smoking status and pathological types showed that these four SNPs were associated with the risk of lung cancer in both smokers and nonsmokers and in all three pathological types, including adenocarcinoma, squamous cell carcinoma, and small cell lung cancer (p < 0.014). CONCLUSION: These results contribute to a better understanding of the pathogenesis of lung cancer and provide new clues for the early detection and personalized treatment of the disease.


Subject(s)
Cyclooxygenase 2 , Dinoprostone , Genetic Predisposition to Disease , Lung Neoplasms , Case-Control Studies , China/epidemiology , Cyclooxygenase 2/genetics , Genotype , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide
11.
Int J Antimicrob Agents ; 57(5): 106332, 2021 May.
Article in English | MEDLINE | ID: mdl-33798705

ABSTRACT

Among the 10 reported mcr genes, mcr-9 was first identified in Salmonella enterica serotype Typhimurium, which is a leading cause of foodborne illness worldwide. However, information about the prevalence and genetic features of mcr-9 is still lacking, especially among food samples. This study reports the presence of mcr-9 in raw milk samples from China; the prevalence rate was low (0.83%, 1/120). mcr-9 was located on a transferable plasmid, and was stable in wild-type S. enterica. However, it had a biological fitness cost when transferred to an Escherichia coli recipient. Whole-genome sequencing revealed that mcr-9 was located on the IncHI2A-type plasmid, and was surrounded by IS903B and IS26 in its flanking regions. The mcr-9-carrying S. enterica 19SE belonged to ST26 and had a multi-drug-resistant phenotype. It was confirmed that mcr-9 did not mediate colistin resistance in this study, indicating that its transfer may not facilitate the dissemination of colistin resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Ethanolaminephosphotransferase/genetics , Milk/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Animals , China , Drug Resistance, Multiple, Bacterial , Ethanolaminephosphotransferase/metabolism , Food Microbiology , Genes, Bacterial , Microbial Sensitivity Tests , Phylogeny , Plasmids , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/metabolism , Whole Genome Sequencing
12.
Microb Cell Fact ; 19(1): 28, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32046719

ABSTRACT

BACKGROUND: Avian coccidiosis posts a severe threat to poultry production. In addition to commercial attenuated vaccines, other strategies to combat coccidiosis are urgently needed. Lactobacillus plantarum has been frequently used for expression of foreign proteins as an oral vaccine delivery system using traditional erythromycin resistance gene (erm). However, antibiotic selection markers were often used during protein expression and they pose a risk of transferring antibiotic resistance genes to the environment, and significantly restricting the application in field production. Therefore, a food-grade recombinant L. plantarum vaccine candidate would dramatically improve its application potential in the poultry industry. RESULTS: In this study, we firstly replaced the erythromycin resistance gene (erm) of the pLp_1261Inv-derived expression vector with a non-antibiotic, asd-alr fusion gene, yielding a series of non-antibiotic and reliable, food grade expression vectors. In addition, we designed a dual-expression vector that displayed two foreign proteins on the surface of L. plantarum using the anchoring sequences from either a truncated poly-γ-glutamic acid synthetase A (pgsA') from Bacillus subtilis or the L. acidophilus surface layer protein (SlpA). EGFP and mCherry were used as marker proteins to evaluate the surface displayed properties of recombinant L. plantarum strains and were inspected by western blot, flow cytometry and fluorescence microscopy. To further determine its application as oral vaccine candidate, the AMA1 and EtMIC2 genes of E. tenella were anchored on the surface of L. plantarum strain. After oral immunization in chickens, the recombinant L. plantarum strain was able to induce antigen specific humoral, mucosal, and T cell-mediated immune responses, providing efficient protection against coccidiosis challenge. CONCLUSIONS: The novel constructed food grade recombinant L. plantarum strain with double surface displayed antigens provides a potential efficient oral vaccine candidate for coccidiosis.


Subject(s)
Coccidiosis , Eimeria tenella/immunology , Lactobacillus plantarum/immunology , Poultry Diseases/drug therapy , Protozoan Vaccines/therapeutic use , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Chickens , Coccidiosis/drug therapy , Coccidiosis/veterinary , Lactobacillus plantarum/genetics , Membrane Proteins/immunology , Protozoan Proteins/immunology
13.
J Microbiol Biotechnol ; 30(4): 515-525, 2020 04 28.
Article in English | MEDLINE | ID: mdl-31838830

ABSTRACT

Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.


Subject(s)
Coronavirus Infections/veterinary , Gastroenteritis, Transmissible, of Swine/prevention & control , Interferons/administration & dosage , Lactobacillus plantarum/genetics , Swine Diseases/prevention & control , Animals , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Gastroenteritis, Transmissible, of Swine/genetics , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/virology , Gene Expression , Interferons/genetics , Interferons/immunology , Lactobacillus plantarum/metabolism , Male , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/genetics , Swine Diseases/immunology , Swine Diseases/virology , Transmissible gastroenteritis virus/physiology
14.
Artif Organs ; 41(5): 461-469, 2017 May.
Article in English | MEDLINE | ID: mdl-27925229

ABSTRACT

The treatment of long-segment tracheal defect requires the transplantation of effective tracheal substitute, and the tissue-engineered trachea (TET) has been proposed as an ideal tracheal substitute. The major cause of the failure of segmental tracheal defect reconstruction by TET is airway collapse caused by the chondromalacia of TET cartilage. The key to maintain the TET structure is the regeneration of chondrocytes in cartilage, which can secrete plenty of cartilage matrices. To address the problem of the chondromalacia of TET cartilage, this study proposed an improved strategy. We designed a new cell sheet scaffold using the poly(lactic-co-glycolic acid) (PLGA) and poly(trimethylene carbonate) (PTMC) to make a porous membrane for seeding cells, and used the PLGA-PTMC cell-scaffold to pack the decellularized allogeneic trachea to construct a new type of TET. The TET was then implanted in the subcutaneous tissue for vascularization for 2 weeks. Orthotopic transplantation was then performed after implantation. The efficiency of the TET we designed was analyzed by histological examination and biomechanical analyses 4 weeks after surgery. Four weeks after surgery, both the number of chondrocytes and the amount of cartilage matrix were significantly higher than those contained in the traditional stem-cell-based TET. Besides, the coefficient of stiffness of TET was significantly larger than the traditional TET. This study provided a promising approach for the long-term functional reconstruction of long-segment tracheal defect, and the TET we designed had potential application prospects in the field of TET reconstruction.


Subject(s)
Chondrogenesis , Dioxanes/chemistry , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Trachea/transplantation , Animals , Cartilage/cytology , Cartilage/physiology , Cartilage/ultrastructure , Cells, Cultured , Chondrocytes/cytology , Lactic Acid/chemistry , Mesenchymal Stem Cell Transplantation/methods , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Regeneration , Trachea/injuries , Trachea/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...