Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Environ Res ; 252(Pt 3): 119015, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692423

ABSTRACT

Carbon material modification and defect engineering are indispensable for bolstering the photocatalytic effectiveness of bismuth halide oxide (BiOX). In this study, a novel porous and defect-rich Ar-CB-2 photocatalyst was synthesized for emerging pollutants degradation. Leveraging the interfacial coupling effect of multi-walled carbon nanotubes (MWCNTs), we expanded the absorption spectrum of BiOI nanosheets and significantly suppressed the recombination of charge carriers. Introducing defects via Argon (Ar) plasma-etching further bolstered the adsorption efficacy and electron transfer properties of photocatalyst. In comparison to the pristine BiOI and CB-2, the Ar-CB-2 photocatalyst demonstrated superior photodegradation efficiency, with the first-order reaction rates for the photodegradation of tetracycline (TC) and bisphenol A (BPA) increasing by 2.83 and 4.53 times, respectively. Further probe experiments revealed that the steady-state concentrations of ·O2- and 1O2 in the Ar-CB-2/light system were enhanced by a factor of 1.67 and 1.28 compared to CB-2/light system. This result confirmed that the porous and defect-rich structure of Ar-CB-2 inhibited electron-hole recombination and boosted photocatalyst-oxygen interaction, swiftly transforming O2 into active oxygen species, thus accelerating their production. Furthermore, the possible degradation pathways for TC and BPA in the Ar-CB-2/light system were predicted. Overall, these findings offered a groundbreaking approach to the development of highly effective photocatalysts, capable of swiftly breaking down emerging pollutants.


Subject(s)
Argon , Benzhydryl Compounds , Bismuth , Nanotubes, Carbon , Phenols , Photolysis , Bismuth/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Porosity , Phenols/chemistry , Benzhydryl Compounds/chemistry , Argon/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Environmental Pollutants/chemistry , Photochemical Processes , Plasma Gases/chemistry
2.
Glob Med Genet ; 11(2): 142-149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606422

ABSTRACT

Objectives This study aimed to identify the association between lactate dehydrogenase (LDH) levels and 30-day mortality in patients with intracranial hemorrhage (ICH) with acute leukemia during the induction phase. Methods This cohort study included patients with acute leukemia with ICH during induction. We evaluated serum LDH levels upon admission. Multivariable Cox regression analyzed the LDH 30-day mortality association. Interaction and stratified analyses based on factors like age, sex, albumin, white blood cell count, hemoglobin level, and platelet count were conducted. Results We selected 91 patients diagnosed with acute leukemia and ICH. The overall 30-day mortality rate was 61.5%, with 56 of the 91 patients succumbing. Among those with LDH levels ≥ 570 U/L, the mortality rate was 74.4% (32 out of 43), which was higher than the 50% mortality rate of the LDH < 570 U/L group (24 out of 48) ( p = 0.017). In our multivariate regression models, the hazard ratios and their corresponding 95% confidence intervals for Log2 and twice the upper limit of normal LDH were 1.27 (1.01, 1.58) and 2.2 (1.05, 4.58), respectively. Interaction analysis revealed no significant interactive effect on the relationship between LDH levels and 30-day mortality. Conclusions Serum LDH level was associated with 30-day mortality, especially in patients with LDH ≥ 570 U/L.

3.
Sci Total Environ ; 926: 172024, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547989

ABSTRACT

The use of reclaimed water for urban river replenishment has raised concerns regarding its impact on water quality and aquatic ecosystems. This study aims to reveal the improvements seen in an urban river undergoing a practical water eco-remediation after being replenished with reclaimed water. A one-year monitoring of water quality, phytoplankton, and zooplankton was carried out in Dongsha River undergoing eco-remediation in Beijing, China. The results showed that compared to the unrestored river, the concentrations of COD, NH4+-N, TP, and TN decreased by 28.22 ± 7.88 %, 40.24 ± 11.77 %, 44.17 ± 17.29 %, and 28.66 ± 10.39 % in the restoration project area, respectively. The concentration of Chlorophyll-a in the restoration area was maintained below 40 µg/L. During summer, when algal growth is vigorous, the density of Cyanophyta in the unrestored river decreased from 46.84 × 104cells/L to 16.32 × 104cells/L in the restored area, while that of Chlorophyta decreased from 41.61 × 104cells/L to 11.87 × 104cells/L, a reduction of 65.16 % and 71.47 %, respectively. The dominant phytoplankton species were replaced with Bacillariophyta, such as Synedra sp. and Nitzschia sp., indicating that the restoration of aquatic plants reduces the risk of Cyanophyta blooms. Zooplankton species also changed in the restoration area, especially during summer. The density of pollution-tolerant Rotifer and Protozoa decreased by 31.06 % and 27.22 %, while the density of clean water indicating Cladocera increased by 101.19 %. We further calculated the diversity and evenness index of phytoplankton and zooplankton within and outside the restoration area. The results showed that the Shannon-Weaver index for phytoplankton and zooplankton in the restoration area was 2.1 and 1.91, which was higher than those in the river (1.84 and 1.82). This further confirmed that aquatic plant restoration has positive effects. This study can provide a practical reference and theoretical basis for the implementation of water ecological restoration projects in other reclaimed water rivers in China.


Subject(s)
Cyanobacteria , Diatoms , Animals , Water Quality , Beijing , Ecosystem , Rivers , China , Phytoplankton , Zooplankton , Environmental Monitoring
4.
J Environ Manage ; 351: 119931, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154220

ABSTRACT

Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.


Subject(s)
Iodine , Water Pollutants, Chemical , Water Purification , Contrast Media/chemistry , Ecosystem , Water Pollutants, Chemical/chemistry , Iodine/chemistry , Wastewater , Water Purification/methods
5.
Chemosphere ; 344: 140214, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739128

ABSTRACT

Sulfamethoxazole (SMX), a widely used antibiotic, has triggered increasing attention due to its extensive detection in wastewater effluent, causing serious ecological threats. Herein, a carbon-based heterogeneous catalyst was developed by the O2 plasma-etching process, regulating oxygen-containing functional groups (OFGs) and defects of carbon nanotubes (O-CNT) to activate peroxymonosulfate (PMS) for highly efficient SMX abatement. Through adjusting the etching time, the desired active sites (i.e., C=O and defects) could be rationally created. Experiments collectively suggested that the degradation of SMX was owing to the contribution of synergism by radical (•OH (17.3%) and SO4•- (39.3%)) and non-radical pathways (1O2, 43.4%), which originated from PMS catalyzed by C=O and defects. In addition, the possible degradation products and transformation pathways of SMX in the system were inferred by combining the Fukui function calculations and the LC-MS/MS analysis. And the possible degradation pathway was effective in reducing the environmental toxicity of SMX, as evidenced by the T.E.S.T. software and the micronucleus experiment on Vicia faba root tip. Also, the catalytic system exhibited excellent performance for different antibiotics removal, such as amoxicillin (AMX), carbamazepine (CBZ) and isopropylphenazone (PRP). This study is expected to provide an alternative strategy for antibiotics removal in water decontamination and detoxification.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Sulfamethoxazole/chemistry , Water , Chromatography, Liquid , Decontamination , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Peroxides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Oxygen/analysis
6.
Environ Sci Pollut Res Int ; 30(50): 109738-109750, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776432

ABSTRACT

Various advanced treatment processes including ultrafiltration (UF), ozonation, enhanced coagulation, and biological aerated filter (BAF) have been applied to reduce dissolved organic matter (DOM) from the secondary effluent of municipal wastewater treatment plants (MWTPs). In this study, DOM were characterized and the relationship between DOM characteristics and disinfection by-products (DBPs) generation was investigated systematically. Results showed that BAF and ozonation processes could significantly affect DOM characteristics in the treated effluents and the following DBP generation. UF and enhanced coagulation reduced the production of DBPs by removing large molecular hydrophobic organics. The removal of low molecule DOM by BAF resulted in a 67.6% reduction in trihalomethanes (THMs) production. Ozonation could oxidize large hydrophobic DOM into small hydrophilic molecules containing aldehyde and ketone groups, leading to 54% increase of halogenated aldehydes (HALs) and halogenated ketones (HKs). Humic acid (HA) was the main organic type in DOM and important precursor for THMs and dichloroacetonitrile (DCAN) formation. The generation of trichloromethane (TCM) showed a significant positive correlation (R2 = 0.987) with the specific ultraviolet absorbance at 254 nm (SUVA). Large molecule hydrophobic DOM devoted the most to the formation of carbonaceous disinfection by-products and [Formula: see text]-N content was an important factor affecting the generation of nitrogenous disinfection by-products. These results are important for the optimization of advanced treatment process in MWTPs, and controlling DBPs should consider the removal of low MW hydrophobic DOM and the reduction of SUVA.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Dissolved Organic Matter , Ultrafiltration , Water Purification/methods , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
7.
Environ Res ; 237(Pt 1): 116961, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37619632

ABSTRACT

Fluoroquinolones (FQs), as the most commonly used antibiotics, are ubiquitous in the aquatic environment. The FQs' self-sensitization process could generate reactive oxygen species (ROS), which could react with other coexisting organic pollutants, impacting their transformation behaviors. However, the FQs' influences and mechanisms on the photochemical transformation of coexisting antibiotics are not yet revealed. In this study, we found ofloxacin (OFL) and norfloxacin (NOR), the two common FQs, can obviously accelerate chlortetracycline (CTC) photodegradation. In the presence of OFL and NOR (i.e., 10 µM), CTC photodegradation rate constants increased by 181.1% and 82.9%, respectively. With the help of electron paramagnetic resonance (EPR) and quenching experiments, this enhancement was attributed to aromatic ketone structure in FQs, which absorbed photons to generate ROS (i.e., 3OFL*, 3NOR*,1O2, and •OH). Notably, 3OFL* or 3NOR* was dominantly contributed to the enhanced CTC photodegradation, with the contribution ratios of 79.9% and 77.3% in CTC indirect photodegradation, respectively. Compared to CTC direct photodegradation, some new photodegradation products were detected in FQs solution, suggesting that 3OFL* or 3NOR* may oxide CTC through electron transfer. Moreover, the higher triple-excited state energy of OFL and NOR over DFT calculation implied that energy transfer from 3OFL* or 3NOR* to CTC was also theoretically feasible. Therefore, the presence of FQs could significantly accelerate the photodegradation of coexisting antibiotics mainly via electron or energy transfer of 3FQs*. The present study provided a new insight for accurately evaluating environmental behaviors and risks when multiple antibiotics coexist.

8.
Environ Sci Technol ; 57(47): 18811-18824, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37428486

ABSTRACT

During the ozonation of wastewater, hydroxyl radicals (•OH) induced by the reactions of ozone (O3) with effluent organic matters (EfOMs) play an essential role in degrading ozone-refractory micropollutants. The •OH yield provides the absolute •OH formation during ozonation. However, the conventional "tert-Butanol (t-BuOH) assay" cannot accurately determine the •OH yield since the propagation reactions are inhibited, and there have been few studies on •OH production induced by EfOM fractions during ozonation. Alternatively, a "competitive method", which added trace amounts of the •OH probe compound to compete with the water matrix and took initiation reactions and propagation reactions into account, was used to determine the actual •OH yields (Φ) compared with that obtained by the "t-BuOH assay" (φ). The Φ were significantly higher than φ, indicating that the propagation reactions played important roles in •OH formation. The chain propagation reactions facilitation of EfOMs and fractions can be expressed by the chain length (n). The study found significant differences in Φ for EfOMs and fractions, precisely because they have different n. The actual •OH yield can be calculated by n and φ as Φ = φ (1 + n)/(nφ + 1), which can be used to accurately predict the removal of micropollutants during ozonation of wastewater.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/analysis , Water , Hydroxyl Radical , tert-Butyl Alcohol
9.
Chemosphere ; 339: 139549, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499802

ABSTRACT

Heterogeneous photocatalysis coupled with peroxymonosulfate (PMS) activation is considered as an advanced water purification technology for emerging contaminates degradation. In this study, Cobalt (Co) doped nitrogen-vacancies-rich C3N5 photocatalysts (Co/Nv-C3N5) were designed to activate PMS for tetracycline removal. The photo-chemical oxidation system displayed superior advantage, in which the observed rate constant of tetracycline degradation (0.1488 min-1) was 10.86 and 1.82 times higher than that of photo-oxidation and chemical-oxidation systems. Density functional theory calculation results verified the reconstruction of local charge distribution during PMS activation, indicating Co doping and nitrogen-vacancy engineering not only promoted photoelectrons capture, but also boosted electron transfer from the C-N framework to PMS and the generation of active species. Furthermore, several unique multiple electron transfer mechanisms were found in nonradicals (h+, 1O2 and Co(IV)) pathways. Additionally, three possible tetracycline degradation pathways were proposed and the toxicity of the intermediates was evaluated. Overall, the findings from this study provided a novel strategy for developing high-efficient photocatalyst for the rapid degradation of organic pollutants.


Subject(s)
Electrons , Heterocyclic Compounds , Tetracycline , Anti-Bacterial Agents , Cobalt , Nitrogen , Peroxides
10.
J Hazard Mater ; 445: 130595, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055997

ABSTRACT

Coupled mixotrophic denitrification and degradation of organics driven by redox transition of Mn for nitrogen removal has attracted much attention. Herein, this study explored the removal performance and mechanisms for nitrogen and refractory organics from secondary effluent in up-flow MnOx biofilter. Results showed that the removal of organics and nitrate was significantly enhanced by the synergistic process of heterotrophic denitrification and Mn(II)-driven autotrophic denitrification (MnAD), which were originated from the facilitation of Mn circulation. But nitrate removal was closely related to the types of carbon source and Mn(II) concentration. Single small molecular carbon source (glucose) performed better than mixed carbon source (humic acid and glucose) in nitrate removal process (74.8% in stage 1-2 vs. 54.1% in stage 3-5). And raising external Mn(II) concentration increased the contribution of MnAD (60.2% in stage 5 vs. 46.5% in stage 3) to nitrate removal. Furthermore, the relationship between Mn/N transformation and microbial community structure shifts revealed that the redox transition between Mn(II) and Mn(IV) promoted the enrichment of denitrogenation bacteria and functional genes, thus contributing to pollutants removal. Our studies expand the knowledge of MnOx-mediated pollutants removal processes and support the potential application of MnOx for removal of residual refractory organics and nitrogen.


Subject(s)
Environmental Pollutants , Nitrates , Nitrates/metabolism , Denitrification , Bioreactors/microbiology , Nitrogen , Autotrophic Processes , Organic Chemicals , Oxidation-Reduction , Carbon
11.
Environ Res ; 227: 115709, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36933641

ABSTRACT

Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Fresh Water , Plants , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 871: 161888, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36731566

ABSTRACT

Harmful algae bloom caused by water eutrophication is a burning question worldwide. Allelochemicals sustained-release microspheres (ACs-SMs) exhibited remarkable inhibition effect on algae, however, few studies have focused on the ecotoxic side-effects of ACs-SMs on submerged plant and its associated microfloras. Herein the effects of different exposure situations including single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs on morphological indexes, chlorophyll content, lipid peroxidation, enzymatic activity, and chlorophyll fluorescence indexes of submerged plant Vallisneria natans and the richness and diversity of its associated microfloras (epibiotic microbes and sediment microbes) were studied. The results showed that pure ACs (RL-ACs and SH-ACs groups) had negative effects on plant height, mean leaf number and area of V. natans, but promoted the increase of mean leaf length. In addition, pure ACs caused lipid peroxidation, activated the antioxidant defense system, decreased chlorophyll content, and damaged photosynthetic system in leaves. Interestingly, ACs-SMs not only had barely negative effects on above indexes of V. natans, but had certain positive effects at the later experiment stage (days 50-60). Pure ACs and ACs-SMs all reduced the richness and diversity of microfloras in each group, and promoted the increase of relative abundance of dominant bacteria Pseudomonas, leading to a simpler community structure. Significantly, V. natans leaves diminished the effects of pure ACs and ACs-SMs on epibiotic microbes, and the plant rhizosphere was beneficial to the increase of dominant bacteria that promoted plant growth. Thus, sustained-release microspherification technology can effectively relieve the ecotoxic side-effects of pure ACs on submerged plant and its associated microfloras. This study fills the gap on the ecological safety knowledge of ACs-SMs and provides primary data for evaluating the feasibility and commercialization prospects of ACs-SMs as algae inhibitor in aquatic ecosystem.


Subject(s)
Ecosystem , Pheromones , Delayed-Action Preparations , Microspheres , Chlorophyll , Harmful Algal Bloom , Bacteria
13.
Huan Jing Ke Xue ; 44(2): 1181-1190, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775640

ABSTRACT

With the introduction of the goal of carbon neutrality, the efficient resource recycling of municipal sludge has been given increasing attention. In order to scientifically evaluate the routes of sludge treatment and disposal from the perspective of carbon emissions, four typical routes were chosen for accounting the carbon emissions per ton for dry sludge (DS). Based on the Intergovernmental Panel on Climate Change (IPCC), combined with Chinese sludge characteristics, carbon emissions were divided into three types:the direct emissions, indirect emissions, and carbon offsets, and accounting boundaries were initiated at sludge thickening and ended at products or energies. The results showed that the total carbon emission of R4 (gravity thickening+thermal hydrolysis+anaerobic digestion+plate and frame filter pressing+transportation+land utilization) was 99.41 kg·t-1(calculated as CO2/DS, same below), which was the route with lowest carbon emissions. If the fugitive emission of CH4 from anaerobic digestion was avoided, the route (R4) could achieve carbon neutrality at this stage. Process units with larger carbon emissions should focus on optimization to reduce the carbon emissions, such as through thermal drying (1049.24 kg·t-1), deep dewatering (960.99 kg·t-1), sanitary landfill (786.24 kg·t-1), incineration (635.52 kg·t-1), aerobic composting (614.17 kg·t-1), and thermal hydrolysis (544.67 kg·t-1). The main carbon offsets were the incineration power generation (-1440.29 kg·t-1), CH4 collection of anaerobic digestion (-435.06 kg·t-1), land utilization (-415.83 kg·t-1), and building materials utilization (-169.75 kg·t-1). In summary, "anaerobic digestion and land utilization" has a great potential for carbon offsets, which should be advocated for as the widely used treatment.

14.
Chemosphere ; 314: 137655, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603680

ABSTRACT

Water pollutants, such as nitrate and organics have received much attention for their harms to ecological environment and human health. The redox transformation between Mn(Ⅱ) and Mn(Ⅳ) for nitrogen and organics removal have been recognized for a long time. Mn(Ⅱ) can act as inorganic electron donor to drive autotrophic denitrification so as to realize simultaneous removal of Mn(Ⅱ), nitrate and organic pollutants. Mn oxides (MnOx) also play an important role in the adsorption and degradation of some organic contaminants and they can change or create new oxidation pathways in the nitrogen cycle. Herein, this paper provides a comprehensive review of nitrogen and organic contaminants removal pathways through applying Mn(Ⅱ) or MnOx as forerunners. The main current knowledge, developments and applications, pollutants removal efficiency, as well as microbiology and biochemistry mechanisms are summarized. Also reviewed the effects of factors such as the carbon source, the environmental factors and operation conditions have on the process. Research gaps and application potential are further proposed and discussed. Overall, Mn-based biotechnology towards advanced wastewater treatment has a promising prospect, which can achieve simultaneous removal of nitrogen and organic contaminants, and minimize sludge production.


Subject(s)
Environmental Pollutants , Manganese , Humans , Nitrates , Nitrogen/metabolism , Denitrification , Oxides , Organic Chemicals , Bioreactors/microbiology
15.
J Hazard Mater ; 447: 130817, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36669411

ABSTRACT

Extracellular DNA (eDNA), as a dynamic repository for antibiotic-resistant genes (ARGs), is a rising threat to public health. This work used a ball-milling method to enhance defect structures of activated carbon, and carbon defects exhibited an excellent capacity in persulfate (PS) activation for model eDNA and real ARGs degradation. The eDNA removal by defect-rich carbon with PS was 2.3-fold higher than that by unmilled activated carbon. The quenching experiment, electrochemical analysis and thermodynamic calculation showed that carbon defects could not only enhance the generation of SO4•- and •OH, but formed an electron transfer bridge between eDNA and PS, leading to the non-radical oxidation of eDNA. According to molecular calculations, the nitrogenous bases of DNA were the easiest sites to be oxidized by electron transfer pathway. This research offers a new way using defective carbon materials as PS activator for eDNA pollutants, and an insight into the non-radical mechanism of eDNA degradation.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Charcoal , Electrons , Sulfates/chemistry , Oxidation-Reduction , DNA
16.
Environ Res ; 219: 115035, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36513128

ABSTRACT

Recently, advanced oxidation processes (AOPs) based upon peracetic acid (PAA) with high efficiency for degrading aqueous organic contaminants have attracted extensive attention. Herein, a novel metal-free N-doped carbonaceous catalyst, namely, carbonized polyaniline (CPANI), was applied to activate PAA to degrade phenolic and pharmaceutical pollutants. The results showed that the CPANI/PAA system could effectively degrade 10 µM phenol in 60 min with low concentrations of PAA (0.1 mM) and catalyst (25 mg L-1). This system also performed well within a wide pH range of 5-9 and displayed high tolerance to Cl-, HCO3- and humic acid. The nonradical pathway [singlet oxygen (1O2)] was found to be the dominant pathway for degrading organic contaminants in the CPNAI/PAA system. Systematic characterization revealed that the graphitic N, pyridinic N, carbonyl groups (CO) and defects played the role of active sites on CPANI during the activation of PAA. The catalytic capacity of spent CPANI could be conveniently recovered by thermal treatment. The findings will be helpful for the application of metal-free carbonaceous catalyst/PAA processes in decontaminating water.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Peracetic Acid , Metals , Oxidation-Reduction , Phenols , Water
17.
J Hazard Mater ; 441: 129905, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36113348

ABSTRACT

The structural defects and heteroatom dopants of carbonaceous materials play critical roles in their activation of peroxymonosulfate (PMS) for organic pollutants' removal. This study uses plasma-etching technology to control the levels of structural defects and nitrogen species in nitrogen-doped carbon nanotubes (N-CNTs) for excellent PMS activation. The vacancy defects, CO, pyrrolic N and graphitic N could be rationally designed by controlling the plasma-etching time. Obviously, the ID/IG (from 0.56 to 0.94) and CO contents (from 0.07 to 0.44 at%) of N-CNTs increase with rising etching time, exhibiting good linear positive correlations with phenol oxidation rates. Furthermore, through active species identification, quantitative structure-activity relationships analysis and theoretical calculations, vacancy defects (adsorbing PMS O1 site) and CO are confirmed to be the active sites for the generation of 1O2, which is major pathway (82%) for phenol degradation. While radicals induced by pyrrolic N and graphitic N adsorbing PMS O2 site are the minor pathway (18%). Overall, this study sheds new light on the crucial roles of defects and N species in inducing PMS non-radical/radical activation by carbocatalyst via efficiently controlled plasma-etching technology.

18.
Environ Sci Pollut Res Int ; 30(9): 23035-23046, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36319923

ABSTRACT

In recent years, the combination of iron carbon micro-electrolysis (ICME) with constructed wetlands (CWs) for removal of nitrogen and phosphorus has attracted more and more attention. However, the removal mechanisms by CWs with iron carbon (Fe-C) substrates are still unclear. In this study, the Fe-C based CW (CW-A) was established to improve the removal efficiencies of nitrogen and phosphorus by optimizing the operating conditions. And the removal mechanisms of nitrogen and phosphorus were explored. The results shown that the removal rates of COD, NH4+-N, NO3--N, TN, and TP in CW-A could reach up to 84.4%, 94.0%, 81.1%, 86.6%, and 84.3%, respectively. Wetland plants and intermittent aeration have dominant effects on the removal of NH4+-N, while the removal efficiencies of NO3--N, TN, and TP were mainly affected by Fe-C substrates, wetland plants, and HRT. XPS analysis revealed that Fe(0)/Fe2+ and their valence transformation played important roles on the pollutants removal. High-throughput sequencing results showed that Fe-C substrates and wetland plants had considerable impacts on the microbial community structures, such as richness and diversity of microorganism. The relative abundance of autotrophic denitrification bacteria (e.g., Denitatsoma, Thauera, and Sulfuritalea) increased in CW-A than CW-C. The electrons and H2/[H] produced from Fe-C substrates were utilized by autotrophic denitrification bacteria for NO3--N reduction. Microbial degradation was the main removal mechanism of nitrogen in CW-A. Removal efficiency of phosphorus was enhanced resulted from the reaction of phosphate with iron ion. The application of CWs with Fe-C substrates and plants presented great potential for simultaneous removal of nitrogen and phosphorus.


Subject(s)
Carbon , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Wetlands , Phosphorus , Nitrogen/chemistry , Iron , Denitrification
19.
J Environ Sci (China) ; 124: 205-214, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182132

ABSTRACT

Allelochemicals sustained-release microspheres (ACs-SMs) exhibited great inhibition effect on algae, however, few studies have focused on ACs-SMs toxicity on invertebrate. In this study, the effects of single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs exposure on the ingestion, incorporation, and digestion of Daphnia magna Straus (DS) were investigated by stable isotope 15N labeling method. Meanwhile, the diversity and abundance of microflora in DS guts were determined by 16S rRNA genes and cloning methods. The results showed that SH-ACs exposure caused 50% and 33.3% death rates for newborn and adult DS, while RL-ACs exposure caused 10% death rate for newborn DS and no obvious effect on the activity of adult DS. And ACs-SMs exposure did not diminish the motility of both newborn and adult DS, indicating the lower acute toxicity of ACs-SMs. Furthermore, SH-ACs inhibited the ingestion (-6.45%), incorporation (-47.1%) and digestion (-53.8%) abilities of DS and reduced the microbial abundance (-27.7%) in DS guts. Compared with SH-ACs, RL-ACs showed relatively low impact on the ingestion (-3.23%), incorporation (-5.89%) and digestion (-23.9%) abilities of DS. Interestingly, ACs-SMs enhanced the ingestion (+9.68%), incorporation (+52.9%) and digestion (+51.3%) abilities of DS and increased the microbial abundance (+10.7%) in DS guts. Overall ACs and ACs-SMs reduced the diversity of microflora in DS guts. In conclusion, ACs-SMs can release ACs sustainably and prolong the sustained release time, which not only effectively reduce the toxicity of ACs, but also had positive effects on DS.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Delayed-Action Preparations/pharmacology , Digestion , Eating , Microspheres , Pheromones , RNA, Ribosomal, 16S , Water Pollutants, Chemical/toxicity
20.
Food Funct ; 13(24): 12721-12732, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36408829

ABSTRACT

Cyanocobalamin (CNCbl, the compound name of Vitamin B12) is the only mineral vitamin that is essential for growth and development and cannot be produced by animals. Some studies have found that CNCbl can promote the proliferation and migration of C2C12 cells, but the mechanism by which it affects muscle development is still unknown. In this study, we elucidated the effect of CNCbl on muscle development and studied its underlying mechanism. CNCbl could promote the differentiation of C2C12 cells and upregulate Acvr1, p-Smad2 and p-Smad3 in the TGF-ß signaling pathway in vitro. CD320 (the receptor in cell surface for binding with CNCbl transporter transcobalamin II) inhibition could reduce the uptake of CNCbl and significantly downregulate the expression of differentiation marker proteins MyoG and MYH2. Furthermore, the levels of p-Smad2 and p-Smad3 were also reduced with the inhibition of CD320, even though CNCbl was added to the C2C12 culture medium. In addition, the injection of CNCbl could accelerate the process of mouse muscle injury repair, enlarge the diameter of newly formed myofibers and upregulate the expression of MYH2, PAX7, CD320, Acvr1, p-Smad2 and p-Smad3 in vivo. These results suggest that CNCbl can promote muscle development and may play its role by regulating the expression of Acvr1, p-Smad2 and p-Smad3 related to the TGF-ß signaling pathway.


Subject(s)
Muscle Development , Transforming Growth Factor beta , Vitamin B 12 , Animals , Mice , Cell Differentiation , Muscle Development/drug effects , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Vitamin B 12/pharmacology , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...