Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
2.
Emerg Microbes Infect ; 13(1): 2350167, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38687692

ABSTRACT

Hepatitis B virus (HBV) infection remains a major public health problem and, in associated co-infection with hepatitis delta virus (HDV), causes the most severe viral hepatitis and accelerated liver disease progression. As a defective satellite RNA virus, HDV can only propagate in the presence of HBV infection, which makes HBV DNA and HDV RNA the standard biomarkers for monitoring the virological response upon antiviral therapy, in co-infected patients. Although assays have been described to quantify these viral nucleic acids in circulation independently, a method for monitoring both viruses simultaneously is not available, thus hampering characterization of their complex dynamic interactions. Here, we describe the development of a dual fluorescence channel detection system for pan-genotypic, simultaneous quantification of HBV DNA and HDV RNA through a one-step quantitative PCR. The sensitivity for both HBV and HDV is about 10 copies per microliter without significant interference between these two detection targets. This assay provides reliable detection for HBV and HDV basic research in vitro and in human liver chimeric mice. Preclinical validation of this system on serum samples from patients on or off antiviral therapy also illustrates a promising application that is rapid and cost-effective in monitoring HBV and HDV viral loads simultaneously.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatitis D , Hepatitis Delta Virus , Viral Load , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/isolation & purification , Humans , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Animals , Hepatitis D/virology , Hepatitis D/diagnosis , Hepatitis B/virology , Hepatitis B/diagnosis , Mice , RNA, Viral/genetics , RNA, Viral/blood , Coinfection/virology , Coinfection/diagnosis , DNA, Viral/genetics , DNA, Viral/blood , Genotype , Sensitivity and Specificity
3.
J Virol ; 98(5): e0018124, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639485

ABSTRACT

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Subject(s)
2',5'-Oligoadenylate Synthetase , Autophagy , Birnaviridae Infections , Chickens , Infectious bursal disease virus , Viral Structural Proteins , Virus Replication , Infectious bursal disease virus/physiology , Animals , Birnaviridae Infections/virology , Birnaviridae Infections/metabolism , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , Poultry Diseases/virology , Poultry Diseases/metabolism , Host-Pathogen Interactions , HEK293 Cells , Humans , Cell Line
4.
Bioanalysis ; 16(7): 135-148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385901

ABSTRACT

Background: DB-1003 is a humanized anti-IgE monoclonal antibody with higher affinity than omalizumab. In the affinity capture elution (ACE)-based bridging electrochemiluminescent immunoassay (ECLIA) for antibodies to DB-1003, monkey serum IgE caused false-positive results. Materials & methods: The target-specific antibody or its F(ab')2 fragment was used to mitigate drug target interference in an ACE-based bridging ECLIA for the detection of anti-DB-1003 antibodies. Results: The sensitivity of the developed assay was at least 100 ng/ml. When the anti-drug antibody concentration was 250 ng/ml, the assay tolerated at least 20.0 µg/ml of the monkey IgE. Conclusion: Incorporating the target-specific antibody or its F(ab')2 fragment can overcome the interference from monkey serum IgE in ACE-based bridging ECLIA for anti-DB-1003 antibody detection.


Subject(s)
Antibodies, Monoclonal , Drug Delivery Systems , Animals , Serum , Haplorhini , Immunoglobulin E , Immunoglobulin Fab Fragments
5.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324558

ABSTRACT

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Poultry Diseases , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/chemistry , Mutation , Chickens , Protein Isoforms/genetics , Viral Envelope Proteins/genetics
6.
Front Neurosci ; 17: 1287480, 2023.
Article in English | MEDLINE | ID: mdl-38075268

ABSTRACT

The epidemic of COVID-19 is mainly manifested by respiratory symptoms caused by SARS-CoV-2 infection. Recently, reports of central nervous system diseases caused or aggravated by SARS-CoV-2 infection are also increasing. Thus, the COVID-19 pandemic poses an unprecedented challenge to the diagnosis and management of neurological disorders, especially to those diseases which have overlapping clinical and radiologic features with each other. In this study, a 31-year-old female patient had been diagnosed with relapsing-remitting multiple sclerosis (RRMS) initially and subsequently developed tumefactive demyelinating lesions (TDLs) following an infection with SARS-CoV-2. After immunotherapy (glucocorticoid pulses), a significant improvement was observed in her both clinical and radiological characteristics. The patient was started on disease-modifying therapy (DMT) with teriflunomide after cessation of oral glucocorticoids. Following two months of DMT treatment, the imaging follow-up revealed that the patient's condition continued to deteriorate. This case was characterized by the transformation of a multiple sclerosis patient (MS) infected with SARS-CoV-2 into TDLs and the ineffectiveness of DMT treatment, which added complexity to its diagnosis and treatment. The case also gave us a hint that SARS-CoV-2 has a potential contributory role in inducing or exacerbating demyelinating diseases of the central nervous system that warrants further investigation.

7.
bioRxiv ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37905103

ABSTRACT

As obligate intracellular pathogens, viruses often activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the salvage NAD+ synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses with unknown mechanism. Here we report that NAMPT restricts herpes simplex virus 1 (HSV-1) replication via phosphoribosyl-hydrolase activity toward key viral structural proteins, independent of NAD+ synthesis. Deep mining of enriched phosphopeptides of HSV-1-infected cells identified phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins. Indeed, NAMPT de-phosphoribosylates viral proteins in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Moreover, loss of NAMPT renders mice highly susceptible to HSV-1 infection. The work describes a hidden enzyme activity of a metabolic enzyme in viral infection and host defense, offering a system to interrogate roles of phosphoribosylation in metazoans.

8.
Front Aging Neurosci ; 15: 1245904, 2023.
Article in English | MEDLINE | ID: mdl-37744399

ABSTRACT

Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.

9.
Nat Commun ; 14(1): 3582, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328459

ABSTRACT

Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection. Primary marmoset hepatocytes and induced pluripotent stem cell-derived hepatocyte-like cells support HBV and more efficient woolly monkey HBV (WMHBV) infection. Adapted chimeric HBV genome harboring residues 1-48 of WMHBV preS1 generated here led to a more efficient infection than wild-type HBV in primary and stem cell derived marmoset hepatocytes. Collectively, our data demonstrate that minimal targeted simianization of HBV can break the species barrier in small NHPs, paving the path for an HBV primate model.


Subject(s)
Hepatitis B , Symporters , Animals , Humans , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Callithrix , Hepatocytes/metabolism , Virus Attachment , Symporters/metabolism , Virus Internalization , Hep G2 Cells
10.
Opt Lett ; 48(7): 1650-1653, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221732

ABSTRACT

The three-primary-color chip array is the most straightforward to realize full-color micro-LED displays. However, the luminous intensity distribution shows high inconsistency between the AlInP-based red micro-LED and GaN-based blue / green micro-LEDs, resulting in the issue of angular color shift with different viewing angles. This Letter analyzes the angular dependence of color difference of conventional three-primary-color micro-LEDs, and proves that the inclined sidewall with homogeneous Ag coating has a limited angular regulation effect for micro-LEDs. Based on this, a patterned conical microstructure array is designed on the micro-LED's bottom layer to effectively eliminate the color shift. This design cannot only regulate the emission of full-color micro-LEDs to perfectly meet Lambert's cosine law without any external beam shaping elements, but also improve the light extraction efficiency of top emission by 16%, 161%, and 228% for red, green, and blue micro-LEDs, respectively. The color shift Δ u ' v ' of the full-color micro-LED display is also kept below 0.02 with the viewing angle ranging from 10° to 90°.

11.
Nanoscale ; 15(19): 8675-8684, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37114516

ABSTRACT

Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskites have attracted a lot of attention due to their unique photochemical properties and enhanced stability towards photoluminescence devices. Compared with three-dimensional materials, two-dimensional perovskites show great potential for photoelectric applications due to their tunable band gap, great excitation binding energy, and large crystal anisotropy. Although the synthesis and optical properties of BA2PbI4 crystals have been extensively studied, the role of their microstructure in photoelectric applications, their electronic structure, and their electron-phonon interaction are still poorly understood. In this paper, based on the preparation of BA2PbI4 crystals, the electronic structure, phonon dispersion, and vibrational properties of BA2PbI4 crystals were revealed in detail with the help of density functional theory. The BA2PbI4 stability diagram of formation enthalpy was calculated. The crystal structure of the BA2PbI4 crystals was characterized and calculated with the aid of Rietveld refinement. A contactless fixed-point lighting device was designed based on the principle of an electromagnetic induction coil, and the points with different thicknesses of BA2PbI4 crystal were tested. It is proved that the excitation peak of the bulk is 564 nm, and the surface luminescence peak is 520 nm. Phonon dispersion curves and the total and partial phonon densities of states have been calculated for the BA2PbI4 crystals. The calculated results are in good agreement with the experimental Fourier infrared spectra. Besides the basic characterization of the BA2PbI4 crystals, the photoelectrochemical properties of the materials were also studied, which further proves the excellent photoelectric properties of the BA2PbI4 crystals and the broad application prospect.

12.
Front Immunol ; 14: 1330576, 2023.
Article in English | MEDLINE | ID: mdl-38268928

ABSTRACT

Infectious bursal disease (IBD) is an acute, highly infectious, and immunosuppressive disease caused by the infectious bursal disease virus (IBDV), which interferes with the immune system, causes hypoimmunity and seriously threatens the healthy development of the poultry industry. Adaptive immune response, an important defense line of host resistance to pathogen infection, is the host-specific immune response mainly mediated by T and B lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV infection is closely related to the injury of the adaptive immune system. In this review, we focus on recent advances in adaptive immune response influenced by IBDV infection, especially the damage on immune organs, as well as the effect on humoral immune response and cellular immune response, hoping to provide a theoretical basis for further exploration of the molecular mechanism of immunosuppression induced by IBDV infection and the establishment of novel prevention and control measures for IBD.


Subject(s)
Immunity, Humoral , Infectious bursal disease virus , Animals , Chickens , B-Lymphocytes , Health Status , Immunosuppressive Agents
13.
J Pharm Anal ; 12(4): 645-652, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36105165

ABSTRACT

Antibody-drug conjugates (ADCs) are commonly heterogeneous and require extensive assessment of exposure-efficacy and exposure-safety relationships in preclinical and clinical studies. In this study, we report the generation of a monoclonal antibody against monomethyl auristatin E (MMAE) and the development, validation, and application of sensitive and high-throughput enzyme-linked immunosorbent assays (ELISA) to measure the concentrations of MMAE-conjugated ADCs and total antibodies (tAb, antibodies in ADC plus unconjugated antibodies) in cynomolgus monkey sera. These assays were successfully applied to in vitro plasma stability and pharmacokinetic (PK) studies of SMADC001, an MMAE-conjugated ADC against trophoblast cell surface antigen 2 (TROP-2). The plasma stability of SMADC001 was better than that of similar ADCs coupled with PEG4-Val-Cit, Lys (m-dPEG24)-Cit, and Val-Cit linkers. The developed ELISA methods for the calibration standards of ADC and tAb revealed a correlation between serum concentrations and the OD450 values, with R 2 at 1.000, and the dynamic range was 0.3-35.0 ng/mL and 0.2-22.0 ng/mL, respectively; the intra- and inter-assay accuracy bias% ranged from -12.2% to -5.2%, precision ranged from -12.4% to -1.4%, and the relative standard deviation (RSD) was less than 6.6% and 8.7%, respectively. The total error was less than 20.4%. The development and validation steps of these two assays met the acceptance criteria for all addressed validation parameters, which suggested that these can be applied to quantify MMAE-conjugated ADCs, as well as in PK studies. Furthermore, these assays can be easily adopted for development of other similar immunoassays.

15.
JHEP Rep ; 4(9): 100535, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36035359

ABSTRACT

Background & Aims: HBV exhibits wide genetic diversity with at least 9 genotypes (GTs), which differ in terms of prevalence, geographic distribution, natural history, disease progression, and treatment outcome. However, differences in HBV replicative capacity, gene expression, and infective capability across different GTs remain incompletely understood. Herein, we aimed to study these crucial aspects using newly constructed infectious clones covering the major HBV GTs. Methods: The replicative capacity of infectious clones covering HBV GTs A-E was analyzed in cell lines, primary hepatocytes and humanized mice. Host responses and histopathology induced by the different HBV GTs were characterized in hydrodynamically injected mice. Differences in treatment responses to entecavir and various HBV capsid inhibitors were also quantified across the different genetically defined GTs. Results: Patient-derived HBV infectious clones replicated robustly both in vitro and in vivo. GTs A and D induce more pronounced intrahepatic and proinflammatory cytokine responses which correlated with faster viral clearance. Notably, all 5 HBV clones robustly produced viral particles following transfection into HepG2 cells, and these particles were infectious in HepG2-NTCP cells, primary human hepatocytes and human chimeric mice. Notably, GT D virus exhibited higher infectivity than GTs A, B, C and E in vitro, although it was comparable to GT A and B in the human liver chimeric mice in vivo. HBV capsid inhibitors were more readily capable of suppressing HBV GTs A, B, D and E than C. Conclusions: The infectious clones described here have broad utility as genetic tools that can mechanistically dissect intergenotypic differences in antiviral immunity and pathogenesis and aid in HBV drug development and screening. Lay summary: The hepatitis B virus (HBV) is a major contributor to human morbidity and mortality. HBV can be categorized into a number of genotypes, based on their specific genetic make-up, of which 9 are well known. We isolated and cloned the genomes of 5 of these genotypes and used them to create valuable tools for future research on this clinically important virus.

16.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35700355

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Subject(s)
Antiviral Agents , Aspartate Carbamoyltransferase , COVID-19 Drug Treatment , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) , Dihydroorotase , Enzyme Inhibitors , Pyrimidines , SARS-CoV-2 , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aspartate Carbamoyltransferase/antagonists & inhibitors , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/antagonists & inhibitors , Dihydroorotase/antagonists & inhibitors , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Mice , Pyrimidines/antagonists & inhibitors , Pyrimidines/biosynthesis , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Transcription Factor RelA/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
17.
Transl Cancer Res ; 11(3): 559-568, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35402180

ABSTRACT

Background: The aim of this study was to evaluate the effect of ligustrazine on the apoptosis of A549 cells and clarify the mechanism of ligustrazine-induced apoptosis. Methods: Ligustrazine was prepared with medium according to the gradient concentration. Based on a cytotoxicity test, 3 different concentrations of ligustrazine were selected to form low, medium, and high groups, with a 0 mg/mL dose used as the control. The apoptosis degree and Fas (Fas cell surface death receptor) and Fas-L (Fas Ligand) expression were detected by flow cytometry and quantitative polymerase chain reaction (qPCR), respectively; meanwhile, the activity of caspase 8 and caspase 3 was analyzed by enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. Results: After 24 hours of ligustrazine administration, the survival rate of A549 cells decreased with the increase of drug concentration, while the rate of apoptosis increased with the increase of drug concentration. Meanwhile, Fas and Fas-L expression was found to be significantly increased at both the gene and protein level, which was positively correlated with drug concentration. Furthermore, the expression of caspase 8 and caspase 3 was positively correlated with the concentration of ligustrazine, and there was significant difference compared with the control group. Conclusions: Ligustrazine can induce the apoptosis of A549 cells via the upregulation of Fas- and caspase-activating death receptor pathway expression.

18.
Liver Int ; 42(6): 1432-1446, 2022 06.
Article in English | MEDLINE | ID: mdl-35230745

ABSTRACT

BACKGROUND & AIMS: The molecular mechanisms underlying hepatocellular carcinoma (HCC) remain poorly understood. In this study, we investigated cell division cycle-associated 3 (CDCA3) expression status and characterized a CDCA3-related long non-coding RNA (lncRNA) in HCC. METHODS: RT-qPCR and western blot were used to determine CDCA3 expression level in HCC clinical specimens. 5' and 3'-RACE, RNAscope, RNA pull-down, CRISPR/Cas9-based RNA immunoprecipitation (CRIP) and site-directed mutation experiments were used to characterize lncCDCA3L and investigate its function target. Chi-square test and Kaplan-Meier analysis were used to assess lncCDCA3L clinical significance. The effects of lncCDCA3L on HCC development were assessed by overexpression in vitro and in vivo. RESULTS: In this study, we found CDCA3 was a potential oncogenic factor in HCC and characterized the lncCDCA3L, which could inhibit CDCA3. LncCDCA3L is significantly downregulated in HCC and its expression level is associated with tumour size and can act as an independent risk factor affecting postoperative survival time in HCC patients. Mechanistically, lncCDCA3L can repress CDCA3 protein level and inhibit hepatocarcinogenesis by directly binding to CDCA3 mRNA at 1423-1455 region via a novel manner based on a hairpin structure motif. CONCLUSIONS: Our study collectively unveiled the molecular mechanisms of how lncCDCA3L repressed the tumourigenic properties of HCC cells and exhibited a tumour suppressor character in HCC in a CDCA3-dependent manner. The findings here support lncCDCA3L can be used as a candidate prognostic biomarker for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Cell Cycle Proteins , Liver Neoplasms , RNA, Long Noncoding , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
ASN Neuro ; 14: 17590914211053505, 2022.
Article in English | MEDLINE | ID: mdl-35164537

ABSTRACT

Neurotrophic herpes simplex virus type 1 (HSV-1) establishes lifelong latent infection in humans. Accumulating studies indicate that HSV-1, a risk factor of neurodegenerative diseases, exacerbates the sporadic Alzheimer's disease (AD). The analysis of viral genetic materials via genomic sequencing and quantitative PCR (qPCR) is the current approach used for the detection of HSV-1; however, this approach is limited because of its difficulty in detecting both latent and lytic phases of the HSV-1 life cycle in infected hosts. RNAscope, a novel in situ RNA hybridization assay, enables visualized detection of multiple RNA targets on tissue sections. Here, we developed a fluorescent multiplex RNAscope assay in combination with immunofluorescence to detect neuronal HSV-1 transcripts in various types of mouse brain samples and human brain tissues. Specifically, the RNA probes were designed to separately recognize two transcripts in the same brain section: (1) the HSV-1 latency-associated transcript (LAT) and (2) the lytic-associated transcript, the tegument protein gene of the unique long region 37 (UL37). As a result, both LAT and UL37 signals were detectable in neurons in the hippocampus and trigeminal ganglia (TG). The quantifications of HSV-1 transcripts in the TG and CNS neurons are correlated with the viral loads during lytic and latent infection. Collectively, the development of combinational detection of neuronal HSV-1 transcripts in mouse brains can serve as a valuable tool to visualize HSV-1 infection phases in various types of samples from AD patients and facilitate our understanding of the infectious origin of neurodegeneration and dementia.


Subject(s)
Herpesvirus 1, Human , Immediate-Early Proteins , Latent Infection , Animals , Brain , Herpesvirus 1, Human/genetics , Humans , Mice , RNA , Trigeminal Ganglion , Viral Structural Proteins , Virus Latency/genetics
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955477

ABSTRACT

Antibody-drug conjugates(ADCs)are commonly heterogeneous and require extensive assessment of exposure-efficacy and exposure-safety relationships in preclinical and clinical studies.In this study,we report the generation of a monoclonal antibody against monomethyl auristatin E(MMAE)and the development,validation,and application of sensitive and high-throughput enzyme-linked immunosor-bent assays(ELISA)to measure the concentrations of MMAE-conjugated ADCs and total antibodies(tAb,antibodies in ADC plus unconjugated antibodies)in cynomolgus monkey sera.These assays were suc-cessfully applied to in vitro plasma stability and pharmacokinetic(PK)studies of SMADC001,an MMAE-conjugated ADC against trophoblast cell surface antigen 2(TROP-2).The plasma stability of SMADC001 was better than that of similar ADCs coupled with PEG4-Val-Cit,Lys(m-dPEG24)-Cit,and Val-Cit linkers.The developed ELISA methods for the calibration standards of ADC and tAb revealed a correlation be-tween serum concentrations and the OD450 values,with R2 at 1.000,and the dynamic range was 0.3-35.0 ng/mL and 0.2-22.0 ng/mL,respectively;the intra-and inter-assay accuracy bias%ranged from-12.2%to-5.2%,precision ranged from-12.4%to-1.4%,and the relative standard deviation(RSD)was less than 6.6%and 8.7%,respectively.The total error was less than 20.4%.The development and validation steps of these two assays met the acceptance criteria for all addressed validation parameters,which suggested that these can be applied to quantify MMAE-conjugated ADCs,as well as in PK studies.Furthermore,these assays can be easily adopted for development of other similar immunoassays.

SELECTION OF CITATIONS
SEARCH DETAIL
...