Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136793

ABSTRACT

In the field of livestock management, noncontact pig weight estimation has advanced considerably with the integration of computer vision and sensor technologies. However, real-world agricultural settings present substantial challenges for these estimation techniques, including the impacts of variable lighting and the complexities of measuring pigs in constant motion. To address these issues, we have developed an innovative algorithm, the moving pig weight estimate algorithm based on deep vision (MPWEADV). This algorithm effectively utilizes RGB and depth images to accurately estimate the weight of pigs on the move. The MPWEADV employs the advanced ConvNeXtV2 network for robust feature extraction and integrates a cutting-edge feature fusion module. Supported by a confidence map estimator, this module effectively merges information from both RGB and depth modalities, enhancing the algorithm's accuracy in determining pig weight. To demonstrate its efficacy, the MPWEADV achieved a root-mean-square error (RMSE) of 4.082 kg and a mean absolute percentage error (MAPE) of 2.383% in our test set. Comparative analyses with models replicating the latest research show the potential of the MPWEADV in unconstrained pig weight estimation practices. Our approach enables real-time assessment of pig conditions, offering valuable data support for grading and adjusting breeding plans, and holds broad prospects for application.

2.
Animals (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37048460

ABSTRACT

Since it is difficult to accurately identify the fertilization and infertility status of multiple duck eggs on an incubation tray, and due to the lack of easy-to-deploy detection models, a novel lightweight detection architecture (LDA) based on the YOLOX-Tiny framework is proposed in this paper to identify sterile duck eggs with the aim of reducing model deployment requirements and improving detection accuracy. Specifically, the method acquires duck egg images through an acquisition device and augments the dataset using rotation, symmetry, and contrast enhancement methods. Then, the traditional convolution is replaced by a depth-wise separable convolution with a smaller number of parameters, while a new CSP structure and backbone network structure are used to reduce the number of parameters of the model. Finally, to improve the accuracy of the network, the method includes an attention mechanism after the backbone network and uses the cosine annealing algorithm in training. An experiment was conducted on 2111 duck eggs, and 6488 duck egg images were obtained after data augmentation. In the test set of 326 duck egg images, the mean average precision (mAP) of the method in this paper was 99.74%, which was better than the 94.92% of the YOLOX-Tiny network before improvement, and better than the reported prediction accuracy of 92.06%. The number of model parameters was only 1.93 M, which was better than the 5.03 M of the YOLOX-Tiny network. Further, by analyzing the concurrent detection of single 3 × 5, 5 × 7 and 7 × 9 grids, the algorithm achieved a single detection number of 7 × 9 = 63 eggs. The method proposed in this paper significantly improves the efficiency and detection accuracy of single-step detection of breeder duck eggs, reduces the network size, and provides a suitable method for identifying sterile duck eggs on hatching egg trays. Therefore, the method has good application prospects.

3.
Animals (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37106939

ABSTRACT

The body mass of pigs is an essential indicator of their growth and health. Lately, contactless pig body mass estimation methods based on computer vision technology have gained attention thanks to their potential to improve animal welfare and ensure breeders' safety. Nonetheless, current methods require pigs to be restrained in a confinement pen, and no study has been conducted in an unconstrained environment. In this study, we develop a pig mass estimation model based on deep learning, capable of estimating body mass without constraints. Our model comprises a Mask R-CNN-based pig instance segmentation algorithm, a Keypoint R-CNN-based pig keypoint detection algorithm and an improved ResNet-based pig mass estimation algorithm that includes multi-branch convolution, depthwise convolution, and an inverted bottleneck to improve accuracy. We constructed a dataset for this study using images and body mass data from 117 pigs. Our model achieved an RMSE of 3.52 kg on the test set, which is lower than that of the pig body mass estimation algorithm with ResNet and ConvNeXt as the backbone network, and the average estimation speed was 0.339 s·frame-1 Our model can evaluate the body quality of pigs in real-time to provide data support for grading and adjusting breeding plans, and has broad application prospects.

4.
J Therm Biol ; 110: 103384, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36462846

ABSTRACT

To address the problem that duck egg mortality is not easily detected at mid-incubation, this paper explored a method to detect mid-incubation egg activity information based on temperature drop curve (TDC) features. In this paper, we used a thermal infrared camera to obtain continuous thermal images of death fertilized duck eggs (DFDE) on the 16th day of incubation and alive fertilized duck eggs (AFDE) hatched for 16-19 days in a 20 °C environment. By observing the temperature drop curve of egg surface, we extracted and visualized five features that could reflect the activity information of duck eggs. And we used K-Nearest Neighbor (KNN), Naive Bayesian (NB) and Support Vector Machine (SVM) to establish the activity information detection models for different incubation days. The results showed that KNN could better distinguish the activity of eggs at the 16th and the 17th day of incubation, with F1-score of 85.43% and 85.98%, respectively. The SVM showed better results at the 18th and the 19th day of incubation, with F1-score of 90.57% and 96.3%, respectively. The experimental results demonstrated that the activity detection method based on the temperature drop curve features in this paper could efficiently and nondestructively detect the activity information of mid-incubation duck eggs, which provided a technical foundation for detecting the activity information of duck eggs at mid-incubation.


Subject(s)
Ducks , Eggs , Animals , Temperature , Bayes Theorem , Zygote
SELECTION OF CITATIONS
SEARCH DETAIL
...