Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Front Pharmacol ; 15: 1413463, 2024.
Article in English | MEDLINE | ID: mdl-38881868

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) has been a highly common and pathological disease worldwide, while current therapeutic regimens have limitations. Chebulae Fructus, a common herbal medicine in Asia, has been documented to exert potential therapeutic effects on HCC in ancient medicine clinical practice. However, the molecular mechanism underlying its inhibitory effects on HCC requires further investigation. Methods: In this study, the anti-HCC effect of the aqueous extract of Chebulae Fructus (CFE) on human HCC and its underlying mechanism were evaluated. Assays including CCK8, EdU staining, crystal violet staining, cell clone formation, flow cytometry, wound healing, and transwell were used in vitro. The cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models were used in vivo. Transcriptomics analysis, qRT-PCR, ELISA, IHC staining, and Western blotting were employed to determine the mechanism of action of CFE. Results: The results demonstrate that CFE effectively suppressed the proliferation and activity of HepG2 and PLC/PRF/5 HCC cells. CFE also induced apoptosis, and suppressed the migration and invasion abilities of these cells. Furthermore, CFE exhibited inhibitory effects on tumor growth in both H22 and PLC/PRF/5 mouse models, as well as in an HCC PDX model which is derived from patient tumor samples. Moreover, it was identified that CFE treatment specifically suppressed the Apelin/APJ system in HCC cells and tumor tissues. To investigate the role of the Apelin/APJ system in mediating the effects of CFE treatment, an APJ overexpressed cell model is established. Interestingly, it was found that the overexpression of APJ significantly diminished the inhibitory effects of CFE on HCC in vitro. Discussion: Collectively, this study provides compelling evidence that CFE exerts significant anti-HCC effects in cell and animal models. Moreover, our findings suggest that the Apelin/APJ system may play a vital role in the therapeutic effects of CFE against HCC.

2.
Opt Express ; 32(1): 179-187, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175047

ABSTRACT

The Tavis-Cummings model is intensively investigated in quantum optics and has important applications in generation of multi-atom entanglement. Here, we employ a superconducting circuit quantum electrodynamic system to study a modified Tavis-Cummings model with directly-coupled atoms. In our device, three superconducting artificial atoms are arranged in a chain with direct coupling through fixed capacitors and strongly coupled to a transmission line resonator. By performing transmission spectrum measurements, we observe different anticrossing structures when one or two qubits are resonantly coupled to the resonator. In the case of the two-qubit Tavis-Cummings model without qubit-qubit interaction, we observe two dips at the resonance point of the anticrossing. The splitting of these dips is determined by Δ λ=2g12+g32, where g1 and g3 are the coupling strengths between Qubit 1 and the resonator, and Qubit 3 and the resonator, respectively. The direct coupling J12 between the two qubits results in three dressed states in the two-qubit Tavis-Cummings model at the frequency resonance point, leading to three dips in the transmission spectrum. In this case, the distance between the two farthest and asymmetrical dips, arising from the energy level splitting, is larger than in the previous case. The frequency interval between these two dips is determined by the difference in eigenvalues (Δ λ=ε 1+-ε 1-), obtained through numerical calculations. What we believe as novel and intriguing experimental results may potentially advance quantum optics experiments, providing valuable insights for future research.

3.
J Agric Food Chem ; 72(1): 363-377, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134348

ABSTRACT

While previous studies have reported G protein-coupled receptor (GPCR)-mediated insecticide resistance in various arthropods, the understanding of GPCR-associated resistance mechanisms in Cydia pomonella remains limited. In this study, a total of 95 CpGPCR genes categorized into four families were identified in C. pomonella. Results revealed high expression levels of the majority of the CpGPCRs during the first larval stage and in the head of C. pomonella. Exposure to lambda-cyhalothrin significantly increased the expression of 15 CpGPCRs, including CpGPCR70, which is highly expressed in all larval stages and shows the highest expression in the midgut. RNA interference (RNAi) demonstrated that downregulation of CpGPCR70 leads to reduced expression of key resistance-related genes and a decreased tolerance of larvae to lambda-cyhalothrin. These findings indicate that CpGPCR70 plays a crucial role in regulating the expression of detoxifying genes involved in lambda-cyhalothrin resistance, offering valuable insights for the development of more effective pest control strategies.


Subject(s)
Insecticides , Moths , Pyrethrins , Humans , Animals , Pyrethrins/pharmacology , Pyrethrins/metabolism , Moths/metabolism , Nitriles/pharmacology , Nitriles/metabolism , Larva , Insecticides/pharmacology , Insecticides/metabolism
4.
Opt Express ; 31(22): 36836-36844, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017825

ABSTRACT

Order is one of the most important concepts to interpret various phenomena such as the emergence of turbulence and the life-evolution process. The generation of laser can also be treated as an ordering process in which the interaction between the laser beam and the gain medium leads to the correlation between photons in the output optical field. Here, we demonstrate experimentally in a hybrid Raman-laser-optomechanical system that an ordered Raman laser can be generated from an entropy-absorption process by a chaotic optomechanical resonator. When the optomechanical resonator is chaotic or disordered enough, the Raman-laser field is in an ordered lasing mode. This can be interpreted by the entropy transfer from the Raman-laser mode to the chaotic motion mediated by optomechanics. Different order parameters, such as the box-counting dimension, the maximal Lyapunov exponent, and the Kolmogorov entropy, are introduced to quantitatively analyze this entropy transfer process, by which we can observe the order transfer between the Raman-laser mode and the optomechanical resonator. Our study presents a new mechanism of laser generation and opens up new dimensions of research such as the modulation of laser by optomechanics.

5.
Phys Rev Lett ; 131(10): 103602, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739354

ABSTRACT

Optical mirrors determine cavity properties by means of light reflection. Imperfect reflection gives rise to open cavities with photon loss. We study an open cavity made of atom-dimer mirrors with a tunable reflection spectrum. We find that the atomic cavity shows anti-PT symmetry. The anti-PT phase transition controlled by atomic couplings in mirrors indicates the emergence of two degenerate cavity supermodes. Interestingly, a threshold of mirror reflection is identified for realizing strong coherent cavity-atom coupling. This reflection threshold reveals the criterion of atomic mirrors to produce a good cavity. Moreover, cavity quantum electrodynamics with a probe atom shows mirror-tuned properties, including reflection-dependent polaritons formed by the cavity and probe atom. Our Letter presents a non-Hermitian theory of an anti-PT atomic cavity, which may have applications in quantum optics and quantum computation.

6.
Mol Clin Oncol ; 19(3): 71, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37614367

ABSTRACT

Breast cancer stands as the most prevalent form of cancer affecting women, with metastasis serving as a leading cause of mortality among patients with breast cancer. Gaining a comprehensive understanding of the metastatic mechanism in breast cancer is essential for early detection and precision treatment of the disease. Circulating tumor cells (CTCs) play a vital role in this context, representing cancer cells that detach from tumor tissues and enter the bloodstream of cancer patients. These cells travel in the blood circulation as single cells or clusters. Recent research has shed light on the enhanced metastatic potential of CTC clusters compared to single CTCs, despite their limited occurrence. The aim of the present review was to explore recent findings on CTCs with a particular focus on the clustering phenomenon of CTCs observed in breast cancer. Additionally, the present review delved into the comparison between single CTCs and CTC clusters regarding their implications for the treatment and prognosis of patients diagnosed with metastatic breast cancer. By examining the role and mechanisms of CTCs in breast cancer metastasis, the present review provided an improved understanding of CTCs and their significance in early detection of breast cancer metastasis through peripheral blood analysis. Moreover, it contributed to the comprehension of cancer prognosis and prediction by highlighting the implications of CTCs in these aspects. Ultimately, the present study seeks to advance knowledge in the field and pave the way for improved approaches to breast cancer management.

7.
Sci Rep ; 13(1): 10337, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365238

ABSTRACT

The purpose of this study was to describe and compare the clinical data, laboratory examination and imaging examination of tuberculous spondylitis (TS) and pyogenic spondylitis (PS), and to provide ideas for diagnosis and treatment intervention. The patients with TS or PS diagnosed by pathology who first occurred in our hospital from September 2018 to November 2021 were studied retrospectively. The clinical data, laboratory results and imaging findings of the two groups were analyzed and compared. The diagnostic model was constructed by binary logistic regression. In addition, an external validation group was used to verify the effectiveness of the diagnostic model. A total of 112 patients were included, including 65 cases of TS with an average age of 49 ± 15 years, 47 cases of PS with an average of 56 ± 10 years. The PS group had a significantly older age than the TS group (P = 0.005). In laboratory examination, there were significant differences in WBC, neutrophil (N), lymphocyte (L), ESR, CRP, fibrinogen (FIB), serum albumin (A) and sodium (Na). The difference was also statistically significant in the comparison of imaging examinations at epidural abscesses, paravertebral abscesses, spinal cord compression, involvement of cervical, lumbar and thoracic vertebrae. This study constructed a diagnostic model, which was Y (value of TS > 0.5, value of PS < 0.5) = 1.251 * X1 (thoracic vertebrae involved = 1, thoracic vertebrae uninvolved = 0) + 2.021 * X2 (paravertebral abscesses = 1, no paravertebral abscess = 0) + 2.432 * X3 (spinal cord compression = 1, no spinal cord compression = 0) + 0.18 * X4 (value of serum A)-4.209 * X5 (cervical vertebrae involved = 1, cervical vertebrae uninvolved = 0)-0.02 * X6 (value of ESR)-0.806 * X7 (value of FIB)-3.36. Furthermore, the diagnostic model was validated using an external validation group, indicating a certain value in diagnosing TS and PS. This study puts forward a diagnostic model for the diagnosis of TS and PS in spinal infection for the first time, which has potential guiding value in the diagnosis of them and provides a certain reference for clinical work.


Subject(s)
Spondylarthritis , Spondylitis , Tuberculosis, Spinal , Humans , Adult , Middle Aged , Retrospective Studies , Case-Control Studies , Abscess , Spondylitis/diagnostic imaging , Spondylitis/pathology , Tuberculosis, Spinal/diagnostic imaging , Tuberculosis, Spinal/pathology , Magnetic Resonance Imaging
8.
Front Bioeng Biotechnol ; 11: 999137, 2023.
Article in English | MEDLINE | ID: mdl-37091332

ABSTRACT

Osteons are composed of concentric lamellar structure, the concentric lamellae are composed of periodic thin and thick sub-lamellae, and every 5 sub-lamellae is a cycle, the periodic helix angle of mineralized collagen fibers in two adjacent sub-lamellae is 30°. Four biomimetic models with different fiber helix angles were established and fabricated according to the micro-nano structure of osteon. The effects of the fiber periodic helical structure on impact characteristic and energy dissipation of multi-layer biomimetic composite were investigated. The calculation results indicated that the stress distribution, contact characteristics and fiber failur during impact, and energy dissipation of the composite are affected by the fiber helix angle. The stress concentration of composite materials under external impact can be effectively improved by adjusting the fiber helix angle when the material composition and material performance parameters are same. Compared with the sample30, the maximum stress of sample60 and sample90 increases by 38.1% and 69.8%, respectively. And the fiber failure analysis results shown that the model with a fiber helix angle of 30° has a better resist impact damage. The drop-weight test results shown that the impact damage area of the specimen with 30° helix angle is smallest among the four types of biomimetic specimens. The periodic helical structure of mineralized collagen fibers in osteon can effectively improve the impact resistance of cortical bone. The research results can provide useful guidance for the design and manufacture of high-performance, impact-resistant biomimetic composite materials.

9.
J Agric Food Chem ; 71(13): 5230-5239, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943249

ABSTRACT

Aryl hydrocarbon receptor (AhR) enhances insect resistance to insecticides by regulating the detoxification network. Our previous studies have confirmed that overexpressions of cytochrome P450 monooxygenases (P450s) and glutathione S-transferases (GSTs) are involved in lambda-cyhalothrin resistance in Cydia pomonella. Here, we report that CpAhR regulates the expression of GST and P450 genes, thus conferring resistance. Expression patterns indicated that the expression of CpAhR was highly induced by lambda-cyhalothrin exposure and upregulated in a lambda-cyhalothrin-resistant population. RNA interference (RNAi) of CpAhR decreases the expression of key resistance-related genes (CpGSTe3, CpCYP9A121, and CpCYP9A122) and the activity of the GST enzyme, reducing the tolerance to lambda-cyhalothrin. Furthermore, ß-naphthoflavone, a novel agonist of AhR, was first proven to be effective in increasing CpAhR expression and larval tolerance to lambda-cyhalothrin. These results demonstrate that CpAhR regulates the expression of key detoxifying genes and GST activity, resulting in the development of resistance to lambda-cyhalothrin in C. pomonella.


Subject(s)
Insecticides , Moths , Pyrethrins , Animals , Receptors, Aryl Hydrocarbon/genetics , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Moths/metabolism , Nitriles/pharmacology , Nitriles/metabolism , Transferases , Glutathione , Insecticide Resistance/genetics
10.
Ecotoxicol Environ Saf ; 252: 114581, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36731179

ABSTRACT

The codling moth Cydia pomonella (Lepidoptera: Tortricidae) is a major invasive pest of pome fruits and walnuts worldwide. Lambda-cyhalothrin (LCT) and abamectin (AM) have been frequently used in C. pomonella control, but control of this pest is very difficult because shortly after hatching, larvae of this insect bore tunnels and hide inside host plant fruit. In this study, a simulated field spray bioassay method was developed against neonate larvae of C. pomonella and concentration-response bioassays were conducted to evaluate the susceptibility of the neonate larvae to LCT and AM. Exposure of neonate larvae to sublethal concentration (LC30) of LCT or AM significantly reduced the survival rate of larvae (4th and 5th instars), lowered the mean weight of larvae and pupae, and decreased the daily maximal number of eggs laid and the total number of eggs laid (fecundity) per female. The sublethal effects, including reduced body mass, mean fecundity and net reproductive rate, extended mean generation time, and shortened oviposition period, were also found in transgenerational offspring. Furthermore, the transgenerational maternal effects were more obvious for AM than LCT, in comparison to the control. Additionally, the estimated population size was decreased by exposure to LC30 of LCT and AM, and the observed reduction of fecundity and population size within and across generations was likely the result of the downregulation of the reproduction-related vitellogenin gene (CpVg) after exposure to LC30 of LCT and AM. These results provide a better understanding of the overall effects of LCT and AM on C. pomonella and the transgenerational effects which should be taken into consideration when using insecticides in order to control C. pomonella.


Subject(s)
Insecticides , Moths , Pyrethrins , Animals , Female , Pyrethrins/toxicity , Larva , Insecticides/toxicity , Reproduction
11.
Exp Cell Res ; 424(1): 113473, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36634743

ABSTRACT

Long non-coding RNA (lncRNA) anomalies cause early ovarian failure. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was down-regulated in premature ovarian failure (POF) mice and connected to the illness, however, the mechanism remained unclear. The levels of gene and protein were measured by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Follicle stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) levels were determined using enzyme-linked immunosorbent assay (ELISA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry were used to determine cell viability and apoptosis. The interaction of NEAT1, miR-654, and stanniocalcin-2 (STC2) was verified by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assays. The results showed NEAT1 and STC2 down-regulated, while miR-654 up-regulated in POF mice. Overexpression of NEAT1 reduced apoptosis and autophagy in cyclophosphamide (CTX)-treated ovarian granulosa cells (OGCs), and Bax, cleaved-caspase3, LC3B, LC3II/LC3I ratio were decreased and Bcl-2 and p62 were raised. NEAT1 suppressed miR-654 expression by directly targeting miR-654. The inhibition of NEAT1 overexpression on apoptosis and autophagy in OGCs was reversed by miR-654 mimics. STC2 was a target gene of miR-654, and miR-654 inhibitor reduced the apoptosis and autophagy by regulating the STC2/MAPK axis. To sum up, NEAT1 reduced miR-654 expression and modulated the STC2/MAPK pathway to decrease apoptosis and autophagy in POF, indicating a potential therapeutic target.


Subject(s)
Apoptosis , Autophagy , Granulosa Cells , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Apoptosis/genetics , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Granulosa Cells/metabolism , Granulosa Cells/pathology
12.
Phytomedicine ; 109: 154572, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610164

ABSTRACT

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Subject(s)
Flavones , Melanoma , Animals , Mice , STAT3 Transcription Factor/metabolism , Signal Transduction , Melanoma/drug therapy , Flavones/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tumor Microenvironment
13.
Pest Manag Sci ; 79(4): 1452-1466, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36519662

ABSTRACT

BACKGROUND: The evolution of insect resistance to pesticides poses a continuing threat to sustainable pest management. While much is known about the molecular mechanisms that confer resistance in model insects and few agricultural pests, far less is known about fruit pests. Field-evolved resistance to synthetic insecticides such as lambda-cyhalothrin has been widely documented in Cydia pomonella, a major invasive pest of pome fruit worldwide, and the increased production of cytochrome P450 monooxygenases (P450s) has been linked to resistance in field-evolved resistant populations. However, the underlying molecular mechanisms of P450-mediated insecticide resistance remain largely unknown. RESULTS: Here we found that functional redundancy and preference of metabolism by P450s genes in the CYP9A subfamily confer resistance to lambda-cyhalothrin in Cydia pomonella. A total of four CYP9A genes, including CYP9A61, CYP9A120, CYP9A121, and CYP9A122, were identified from Cydia pomonella. Among these, CYP9A120, CYP9A121, and CYP9A122 were predominantly expressed in the midgut of larvae. The expression levels of these P450 genes were significantly induced by a lethal dose that would kill 10% (LD10 ) of lambda-cyhalothrin and were overexpressed in a field-evolved lambda-cyhalothrin resistant population. Knockdown of CYP9A120 and CYP9A121 by RNA-mediated interference (RNAi) increased the susceptibility of larvae to lambda-cyhalothrin. In vitro assays demonstrated that recombinant P450s expressed in Sf9 cells can metabolize lambda-cyhalothrin, but with functional redundancy and divergence through regioselectivity of metabolism. CYP9A121 preferred to convert lambda-cyhalothrin to 2'-hydroxy-lambda-cyhalothrin, whereas CYP9A122 only generated 4'-hydroxy metabolite of lambda-cyhalothrin. Although possesses a relatively low metabolic capability, CYP9A120 balanced catalytic competence to generate both 2'- and 4'-metabolites. CONCLUSION: Collectively, these results reveal that metabolic functional redundancy of three members of the CYP9A subfamily leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella, thus representing a potential adaptive evolutionary strategy during its worldwide expansion. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Moths , Pyrethrins , Animals , Pyrethrins/metabolism , Insecticides/metabolism , Moths/genetics , Nitriles/metabolism , Larva/metabolism , Insecticide Resistance/genetics
14.
Cancer Biomark ; 35(4): 419-427, 2022.
Article in English | MEDLINE | ID: mdl-36404538

ABSTRACT

BACKGROUND: Post-hepatectomy liver failure (PHLF) is a severe complication of liver surgery in hepatocellular carcinoma (HCC) patients. Reduced lean body mass (LBM) decreases the immune activity and increases adverse clinical outcomes among cancer patients. OBJECTIVE: We aimed to assess the association between LBM and PHLF in HCC patients. METHODS: PHLF was defined and graded based on the International Study Group of Liver Surgery (ISGLS) criteria. Patients with Grade B or Grade C were included in PHLF ⩾ Grade B group, while others in PHLF < Grade B group. LBM was measured via preoperative computed tomography images. Binary logistic regression was applied for investigating the association between LBM and PHLF. The receiver operating characteristic curve was used to identify potential cut-off values and assess the predictive ability of the measured variables. RESULTS: The PHLF ⩾ Grade B group had significantly lower LBM levels (means ± standard deviation: 57.0 ± 14.1) than PHLF < Grade B group (67.2 ± 15.7) (p< 0.001). After controlling other variables, LBM was an independent protective factor for PHLF ⩾ Grade B (Odds Ratio: 0.406, 95% confidence interval: 0.172-0.957, p= 0.039). The prevalence of PHLF ⩾ Grade B in each quartile of LBM was 29.4% (15/51), 25.5% (13/51), 19.2% (10/52) and 4.0% (2/50), respectively (ptrend< 0.001). CONCLUSIONS: LBM might be a protective factor for PHLF in HCC patients. Our findings might help to develop a novel strategy to reduce the occurrence of hepatic dysfunction following major liver resection. Multicentric prospective studies and further molecular biologic investigation are needed.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/complications , Liver Neoplasms/surgery , Liver Neoplasms/complications , Prospective Studies , Liver Cirrhosis/pathology , Liver Failure/etiology , Liver Failure/complications , Retrospective Studies , Postoperative Complications/etiology
17.
J Mol Med (Berl) ; 100(9): 1271-1286, 2022 09.
Article in English | MEDLINE | ID: mdl-35788718

ABSTRACT

Endometrial carcinoma (EC) is a kind of fatal female malignancy. lncRNA GATA3-AS1 has been identified as an oncogene in various cancers. However, the functions and mechanisms of GATA3-AS1 in EC remain to be explored. Human EC tissues and four EC cell lines were used. Western blotting and quantitative real-time PCR (qRT-PCR) were used to evaluate the expression of GATA3-AS1, miR-361, and ARRB2. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the interaction among GATA3-AS1, miR-361, and ARRB2. Flow cytometry, colony formation assay, scratch assay, and transwell assay were used to examine the cell apoptosis, proliferation, migration, and invasion of EC cells, respectively. In vivo tumor growth was monitored in nude mice. GATA3-AS1 and ARRB2 were upregulated while miR-361 was downregulated in human EC tissues and EC cells. GATA3-AS1 knockdown constrained cell proliferation, invasion, migration, and EMT while promoting the apoptosis of EC cells by upregulating miR-361. GATA3-AS1 negatively regulated miR-361 expression. ARRB2 was the direct target of miR-361 and could activate the Src/Akt pathway. In vivo, GATA3-AS1 knockdown suppressed tumor progression by upregulating the miR-361 expression. lncRNA GATA3-AS1 promoted EC invasion and migration by the miR-361/ARRB2 axis, which indicated that GATA3-AS1 might be a promising therapeutic option for advanced EC progression. KEY MESSAGES: GATA3-AS1 knockdown suppressed EC proliferation, invasion, and migration. GATA3-AS1 directly inhibited miR-361 as a ceRNA. MiR-361 knockdown reversed the tumor suppressive effect caused by GATA3-AS1 knockdown. MiR-361 bound to ARRB2 directly and suppressed its expression. The GATA3-AS1/miR-361/ARRB2 axis regulated EC cell proliferation, invasion, and migration.


Subject(s)
Endometrial Neoplasms , MicroRNAs , RNA, Long Noncoding , beta-Arrestin 2 , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism
18.
Front Oncol ; 12: 854137, 2022.
Article in English | MEDLINE | ID: mdl-35574329

ABSTRACT

Background: Breast cancer is one of the most commonly diagnosed cancers, and the fourth leading cause of cancer deaths in females worldwide. Sarcopenia is related to adverse clinical outcomes in patients with malignancies. Muscle index is a key parameter in evaluating sarcopenia. However, there is no data investigating the association between muscle index and distant metastasis in breast cancer. The aim of this study was to explore whether muscle index can effectively predict distant metastasis and death outcomes in breast cancer patients. Study Design: The clinical data of 493 breast cancer patients at the Harbin Medical University Cancer Hospital between January 2014 and December 2015 were retrospectively analyzed. Quantitative measurements of pectoralis muscle area and skeletal muscle area were performed at the level of the fourth thoracic vertebra (T4) and the eleventh thoracic vertebra (T11) of the chest computed tomography image, respectively. The pectoralis muscle index (PMI) and skeletal muscle index (SMI) were assessed by the normalized muscle area (area/the square of height). Survival analysis was performed using the log-rank test and Cox proportional hazards regression analysis. Result: The patients with metastases had lower PMI at T4 level (PMI/T4) and SMI at T11 level (SMI/T11) compared with the patients without metastases. Moreover, there were significant correlations between PMI/T4 and lymphovascular invasion, Ki67 expression, multifocal disease, and molecular subtype. In addition, multivariate analysis revealed that PMI/T4, not SMI/T11, was an independent prognostic factor for distant metastasis-free survival (DMFS) and overall survival (OS) in breast cancer patients. Conclusions: Low PMI/T4 is associated with worse DMFS and OS in breast cancer patients. Future prospective studies are needed.

19.
Gastroenterol Res Pract ; 2022: 9012063, 2022.
Article in English | MEDLINE | ID: mdl-35432525

ABSTRACT

Background: Elevated platelet volume is the risk factor for the development and poor overall survival of colorectal cancer (CRC) patients. Both microsatellite status and platelet glycoprotein Ibα (GPIbα) are related to platelet volume in CRC patients. This study aimed to investigate platelet GPIbα ectodomain (termed glycocalicin) levels among CRC patients and the association between the glycocalicin levels and microsatellite status in CRC. Methods: The clinical and laboratory data of 430 CRC patients between January 2018 and December 2018 in Harbin Medical University Cancer Hospital were collected. The microsatellite status was determined with a polymerase chain reaction. The participants were separated into high microsatellite instability (MSI-H) and microsatellite stable (MSS) groups according to microsatellite status. The glycocalicin levels were measured with an enzyme-linked immunosorbent assay, and the cut-off point was determined with the receiver-operating characteristics curve. The clinical and pathological characteristics were collected via electronic medical records. Logistic regression was used to explore the association between glycocalicin and microsatellite status. Results: Among the 430 CRC patients enrolled, 64 patients (14.9%) were identified as MSI-H and others as MSS CRC. Glycocalicin levels were significantly reduced in patients with MSI-H than those with MSS. After controlling for potential confounders, logistic regression analysis revealed that glycocalicin levels were independently associated with MSI-H CRC. Conclusions: Reduced glycocalicin levels are associated with the MSI-H subtype of CRC. Further research is needed to elucidate the mechanisms of the association between glycocalicin and MSI-H in CRC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...