Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
World J Clin Cases ; 10(32): 12022-12027, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36405292

ABSTRACT

BACKGROUND: Retroperitoneal leiomyoma is a rare benign tumor. Retroperitoneal leiomyomas located in the latissimus uterine ligament are even rarer. Retroperitoneal leiomyomas have similar characteristics to uterine leiomyomas in terms of tissue, which results in confusion during diagnosis. CASE SUMMARY: A 47-year-old female with 3 years of pain in the right lower quadrant and discovery of a pelvic mass 13 d ago underwent open abdominal exploration. In the right broad ligament, a solid mass with well circumscribed boundaries, approximately 15 cm × 10 cm × 10 cm in size was bluntly peeled off. The pathological result was a spindle cell tumor, morphologically considered to originate from smooth muscle. Immunohistochemical results supported a deep soft tissue leiomyoma. CONCLUSION: Retroperitoneal leiomyoma is a rare benign tumor, and surgical treatment can have a good therapeutic effect.

2.
Pathol Res Pract ; 238: 154115, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36084427

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers, and has an extremely poor prognosis. Our previous study confirmed that the microRNA miR-361-5p inhibited the proliferation, metastasis, invasiveness, and epithelial-to-mesenchymal transition (EMT) process of HCC by targeting the transcription factor Twist1. Long non-coding RNAs (lncRNAs) are key regulators of processes such as cell differentiation, inflammation, tumor formation, and immune escape. However, the underlying interactions between the lncRNA LINC00992, miR-361-5p, and Twist1 in HCC progression is still elusive. In the current study, the DIANA-lncBase database was used to identify regulatory genes upstream of miR-361-5p. Reverse transcription-quantitative PCR (RT-qPCR) was used to quantify the expression of the genes encoding LINC00992, miR-361-5p, and Twist1 in HCC cells. The cell counting kit-8 (CCK-8) was used to measure HCC cell proliferation and Transwell was used to measure HCC cell migration and invasion. The dual-luciferase reporter assay and RNA pull-down assay were performed to examine the interaction between LINC00992 and miR-361-5p. Western blotting was used to detect the levels of Twist1 protein. The result confirmed that, among three lncRNAs tested, miR-361-5p was the one most significantly affected by LINC00992. RT-qPCR revealed that LINC00992 was highly expressed in HCC tissues and cells. The follow-up results showed that the expression of LINC00992 and miR-361-5p in HCC tissues were closely correlated with the rate of metastasis or recurrence of the HCC patients. Our result showed that the expression of miR-361-5p was lower in the LINC00992 (+) group than in the LINC00992 (-) group. CCK-8 and Transwell showed that LINC00992 promoted HCC cell proliferation, migration, and invasion, whereas dual-luciferase reporter assay and RNA pull-down assay showed that LINC00992 combined with miR-361-5p to act as a miRNA decoy in HCC. RT-qPCR and Western blotting confirmed that LINC00992 upregulated the expression of the Twist1 gene in HCC cells by downregulating expression of miR-361-5p. CCK-8 and Transwell assays confirmed that LINC00992 promoted the proliferation, metastasis, and invasiveness of HCC cells by downregulating miR-361-5p levels and consequently upregulating Twist1 expression, implying that these three elements may be promising targets for HCC therapy.

3.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805931

ABSTRACT

Arsenicals have been widely used in the treatment of cancers such as leukemia and other tumors. However, their side effects limit their clinical application. Stiripentol, a second-line adjunctive treatment for epilepsy with a good safety profile, inhibits microsomal cytochrome-P450-family enzymes to extend the retention time of co-administration. Inspired by the metabolism of stiripentol, the 1,3-benzodioxole responsible for the inhibition and its metabolic derivatives were conjugated with arsenical precursors. The fabricated arsenicals were eliminated much slower in mice and maintained an efficient concentration in the blood for a longer time than that of the arsenical precursors. They also performed better in anti-proliferation by inhibiting the thioredoxin system to induce oxidative stress, and concomitantly to initiate apoptosis in vitro and in vivo. The fabricated arsenicals reversed the hemogram of tumor-bearing mice to normal and eliminated the tumor without causing damage to any organs, exhibiting a good design strategy and pre-clinical application for leukemia and other tumors.


Subject(s)
Arsenicals , Leukemia , Neoplasms , Animals , Apoptosis , Arsenicals/pharmacology , Arsenicals/therapeutic use , Dioxoles , Leukemia/drug therapy , Mice , Neoplasms/pathology
4.
Methods Mol Biol ; 2497: 173-184, 2022.
Article in English | MEDLINE | ID: mdl-35771442

ABSTRACT

Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.


Subject(s)
Arsenicals , Apoptosis , Arsenic Trioxide/metabolism , Arsenic Trioxide/toxicity , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Oxides , Reactive Oxygen Species/metabolism
5.
Cell Death Dis ; 12(8): 771, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34719669

ABSTRACT

Although increasing evidence has confirmed that the apoptosis of renal tubular epithelial cells (RTECs) is a crucial contributor to the onset and development of septic acute kidney injury (AKI), the pathological mechanism by which RTEC apoptosis is upregulated during septic AKI is not entirely clear. In this study, a rat model of septic AKI was induced by a cecal ligation puncture procedure or lipopolysaccharide (LPS) injection. Four differentially expressed long noncoding RNAs (DE-Lncs) in the rat model of septic AKI were determined using RNA-sequencing and verified by qRT-PCR. Among the four DE-Lncs, the expression level of lncRNA NONRATG019935.2 (9935) exhibited the most significant reduction in both septic AKI rats and LPS-treated NRK-52E cells (a rat RTEC line). The overexpression of 9935 suppressed cell apoptosis and p53 protein level in LPS-treated NRK-52E cells, and retarded septic AKI development in the rat model of septic AKI. Mechanistically, 9935 decreased the human antigen R (HuR)-mediated Tp53 mRNA stability by limiting the combination of HuR and the 3'UTR region of Tp53 mRNA in RTECs. The overexpression of HuR abrogated the inhibitory effect of pcDNA-9935 on the LPS-induced apoptosis of NRK-52E and rat primary RTECs. In conclusion, 9935 exerts its role in septic AKI by suppressing the p53-mediated apoptosis of RTECs, and this essential role of 9935 relies on its destructive effect on HuR-mediated Tp53 mRNA stability.


Subject(s)
Acute Kidney Injury/genetics , Apoptosis/genetics , Epithelial Cells/pathology , Kidney Tubules/pathology , RNA, Long Noncoding/genetics , Sepsis/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics , Acute Kidney Injury/complications , Animals , Cecum/pathology , Down-Regulation/genetics , ELAV-Like Protein 1/metabolism , Gene Expression Profiling , Ligation , Lipopolysaccharides , Models, Biological , Punctures , RNA Stability/genetics , RNA, Long Noncoding/metabolism , Rats, Sprague-Dawley , Sepsis/complications , Tumor Suppressor Protein p53/genetics
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(2): 446-452, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32319377

ABSTRACT

OBJECTIVE: To investigate the effect of Bmi-1 gene silencing on the proliferation of K562/ADM cells in vitro and in vivo and to explore its possible molecular mechanism. METHODS: The small interference RNA (siRNA) sequences of Bmi-1 were transfected into K562/ADM cells for decreasing the expression of Bmi-1. The effect of Bmi-1 silencing on the proliferation of K562/ADM cells in vitro and in vivo was detected by using MTT method, cell colony-forming test and tumoriganicity of nude mice; the expression of Bmi-1, PTEN and PAKT proteins was detected by Wertern blot. The immunohistochemistry assay was used to analyze the expression of Bmi-1 and Ki-67. RESULTS: The Bmi-1 silencing could significantly inhibit the proliferation activity of K562/ADM cells, the cell colony-forming ability and tumorigenicity were reduced. LY294002 decreased p-AKT expression, cell colony-forming ability and tumorigenicity. Bpv reduced the PTEN expression but increased p-AKT expression and restored the colony-forming ability and tumorigenesis of K562/ADM-S1-Bpv cells. Bmi-1-siRNA dramatically suppressed the Bmi-1 and Ki-67 protein levels in xenograft tumor tissue. CONCLUSION: Bmi-1 can mediate the proliferation of K562/ADM cell, the PTEN/p-AKT might be involved in this pathway.


Subject(s)
Cell Proliferation , Animals , Apoptosis , Doxorubicin , Drug Resistance, Neoplasm , Humans , K562 Cells , Mice , Mice, Nude , Transfection
7.
ChemMedChem ; 15(6): 552-558, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32101363

ABSTRACT

Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/pharmacology , Electron Transport/drug effects , Enzyme Inhibitors/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Pyruvate Dehydrogenase Complex/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Arsenicals/chemical synthesis , Arsenicals/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pyruvate Dehydrogenase Complex/metabolism , Reactive Oxygen Species/metabolism
8.
Int J Mol Sci ; 20(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835667

ABSTRACT

Based on the potential therapeutic value in targeting metabolism for the treatment of cancer, an organic arsenical PDT-BIPA was fabricated, which exerted selective anti-cancer activity in vitro and in vivo via targeting lactate dehydrogenase A (LDHA) to remodel the metabolic pathway. In details, the precursor PDT-BIPA directly inhibited the function of LDHA and converted the glycolysis to oxidative phosphorylation causing ROS burst and mitochondrial dysfunction. PDT-BIPA also altered several gene expression, such as HIF-1α and C-myc, to support the metabolic remodeling. All these changes lead to caspase family-dependent cell apoptosis in vivo and in vitro without obvious side effect. Our results provided this organic arsenical precursor as a promising anticancer candidate and suggested metabolism as a target for cancer therapies.


Subject(s)
Arsenicals/pharmacology , Disease Progression , Lactate Dehydrogenase 5/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Organic Chemicals/pharmacology , Animals , Arsenicals/chemical synthesis , Arsenicals/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Female , Glutathione/metabolism , Humans , Ki-67 Antigen/metabolism , Lactate Dehydrogenase 5/antagonists & inhibitors , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Oxygen Consumption/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Xenograft Model Antitumor Assays
9.
J Orthop Surg Res ; 14(1): 328, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31639015

ABSTRACT

BACKGROUND: Kashin-Beck disease (KBD) is an endemic osteoarthropathy, and its pathogenesis is still not entirely clear. Pathologically, many KBD changes are similar to those of osteoarthritis (OA). Therefore, this study aimed to identify changes in the levels of potential urinary biomarkers for OA, including C-telopeptide of type II collagen (uCTX-II), type II collagen cleavage neoepitope (uC2C), pyridinoline (uPYD), and uHelix-II, among adults with KBD. METHODS: Urinary samples of 83 external control (EC) subjects, 91 KBD patients, and 86 internal control (IC) subjects were tested by ELISA after the subjects completed a questionnaire and X-ray examination. RESULTS: The medians of the four markers in the KBD group were higher than those in the EC group and those in the IC group. The medians in the grade II KBD group were higher than those in the grade I group but were not statistically significant (P = 0.301, P = 0.408, P = 0.204, and P = 0.898 for uCTX-II, uC2C, uPYD, and uHelix-II, respectively). The area under the curve (AUC) of uCTX-II (0.775) was higher than that of the others (0.672, 0.639, and 0.628 for uC2C, uPYD, and uHelix-II, respectively). CONCLUSION: The levels of uCTX-II, uC2C, uPYD, and uHelix-II were elevated in adults with KBD and showed an increasing trend as the severity of KBD increased. The prediction accuracy of uCTX-II was more useful than that of the others for assisting in the diagnosis of KBD.


Subject(s)
Amino Acids/urine , Collagen Type II/urine , Kashin-Beck Disease/diagnosis , Kashin-Beck Disease/urine , Peptide Fragments/urine , Adult , Aged , Biomarkers/urine , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(3): 685-691, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31204917

ABSTRACT

OBJECTIVE: To investigate the effect of Bmi-1 gene silence on the proliferation ability of K562 cells in vitro and in vivo, and to explore the relation of molecular mechanism between proliferation ability of K562 cells in vitro and in vivo with PTEN/pAKT signaling pathway. METHODS: The Bmi-1 small interference RNA (siRNA) sequences were transfected into K562 cells for decreasing Bmi-1 expression. The effect of Bmi-1 siRNA on the proliferation of K562 cells in vitro and in vivo was detected by MTT method and colony-forming test, the effect of Bmi-1 siRNA on the tumorogenicity of K562 cells was observed by subcutaneous inoculation of K562 cells, LY294002 and Bpv treated K562 cells in nude mice, the expression of Bmi-1, PTEN and pAKT proteins were detected by Western blot. RESULTS: The Bmi-1 siRNA could inhibit the proliferation activity, colony-forming and tumor-forming abilities of K562 cells. After the silence of Bmi-1 gene, the PTEN expression in Bmi-1 gene-silenced group was significantly enhanced. While the pAKT expression in Bmi-1 gene-silenced group was significantly reduced; after the K562 cells were treated with LY294002 (an inhibitor of pAKT), the pAKT expression colony-forming and tumor forming abilities were reduced in comparison with untreated K562 cells; after the K562-S1 cells were treated with Bpv (an inhibitor of PTEN), the PTEN expression decreased, while the pAKT expression, colony forming and tumor-forming abilities were restored. CONCLUSION: The Bmi-1 gene possibly involves in regulation of K562 proliferation in vivo and in vitro, the effect of PTEN/pAKT signaling pathway maybe one of molecular mechanisms mediating this regulation.


Subject(s)
Apoptosis , Leukemia , Animals , Cell Proliferation , Humans , K562 Cells , Mice , Mice, Nude , PTEN Phosphohydrolase , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins c-akt , RNA, Small Interfering , Signal Transduction
11.
Bioorg Med Chem ; 27(5): 760-768, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30665675

ABSTRACT

Considering the vital role of mitochondria in the anti-cancer mechanism of organic arsenical, the mitochondria-targeted precursor PDT-PAO-TPP was designed and synthesized. PDT-PAO-TPP, as a delocalization lipophilic cation (DLCs) which mainly accumulated in mitochondria, contributed to improve anti-cancer efficacy and selectivity towards NB4 cells. In detail, PDT-PAO-TPP inhibited the activity of PDHC resulting in the suppression of ATP synthesis and thermogenesis disorder. Additionally, the inhibition of respiratory chain complex I and IV by short-time incubation of PDT-PAO-TPP also accelerated the respiration dysfunction and continuous generation of ROS. These results led to the release of cytochrome c and activation of caspase family-dependent apoptosis. Different from the mechanism of PDT-PAO in HL-60 cells, it mainly induced the mitochondrial metabolic disturbance resulting in the intrinsic apoptosis via inhibiting the activity of PDHC in NB4 cells, which also implied that the efficacy exertion of organic arsenical was a complex process involved in many aspects of cellular function. This study systematically clarifies the anti-cancer mechanism of mitochondria-targeted organic arsenical PDT-PAO-TPP and confirms the new target PDHC of organic arsenicals, which further supports the organic arsenical as a promising anticancer drug.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Mitochondria/drug effects , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Arsenicals/chemical synthesis , Cell Line, Tumor , Cell Respiration/drug effects , Cytochromes c/metabolism , Humans , Mitochondrial Membranes/metabolism , Permeability/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Reactive Oxygen Species/metabolism , Thermogenesis/drug effects
12.
Toxicol Res (Camb) ; 7(2): 191-200, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-30090574

ABSTRACT

In order to clarify the mitochondrial toxicity mechanism of the organic arsenical MOPIMP (2-methoxy-4-(((4-(oxoarsanyl) phenyl) imino) methyl) phenol), research was carried out at the sub-cell level based on the previous finding that the compound MOPIMP can damage the mitochondria by triggering a burst of ROS. After investigating its influence on isolated mitochondria in vitro, it was demonstrated that a high dose of MOPIMP with short-term exposure can induce mitochondrial swelling, decrease the membrane potential, enhance the permeability of H+ and K+, and induce membrane lipid peroxidation, indicating that it can result in an MPT process in a ROS-mediated and Ca2+-independent manner. Additionally, MPT was also aggravated as a result of impairment of the membrane integrity and membrane fluidity. In addition, short-term incubation between mitochondria and compound MOPIMP promoted the inhibition of respiratory chain complexes I, II, III and IV, as well as damage to the respiration process, which supported the previous finding about the burst of ROS. On the other hand, after long-term exposure by the organic arsenical MOPIMP, mitochondrial metabolic dysfunction was triggered, which was in accordance with perturbation of the respiratory chain complexes as well as the respiration process. This work systematically sheds light on the mitochondrial toxicity mechanism of the organic arsenical MOPIMP, including induction of the MPT process and inhibition of respiratory metabolism, which provides a potential target for organic arsenicals as anti-tumor drugs.

13.
Eur J Med Chem ; 143: 1090-1102, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29150332

ABSTRACT

Considering the vital role of cellular redox state, more and more researches focus on the design of drugs targeting thioredoxin reductase (TrxR), an important enzyme in maintaining the balance of cellular redox. Here two organic arsenicals, 2-(((4-(1,3,2-dithiarsinan-2-yl) phenyl) imino) methyl) phenol (PIM-PAO-PDT) and N-(4-(1,3,2-dithiarsinan-2-yl) phenyl)-2-hydroxybenzamide (PAM-PAO-PDT), bearing the S-As-S chemical scaffold and different linking groups have been synthesized, and both of them show the better inhibitory activity and selectivity towards HL-60 cells. Importantly, it is illustrated that they can target TrxR selectively and inhibit its activity via the disturbance for Cys83 and Cys88 located in conserved active sites. Afterwards, the cells suffer from the burst of ROS, consumption of antioxidants and high sensitivity for oxidants, which further damage the mitochondria leading to dysfunction including the collapse of membrane potential, ATP level decline, mitochondrial membrane swelling, MPTP opening, Ca2+ and cytochrome c release. Then the mitochondria-dependent apoptosis is triggered by PIM-PAO-PDT and PAM-PAO-PDT, which can also be deterred in the presence of NAC, DTT or LA. Although the organic arsenicals can suppress TrxR activity, the following oxidative stress and mitochondrial dysfunction are the main causes for apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Arsenicals/chemical synthesis , Arsenicals/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mitochondria/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism , Tumor Cells, Cultured
14.
Sci Rep ; 6: 29865, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27432798

ABSTRACT

Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 µM and 0.51 µM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs.


Subject(s)
Arsenicals/pharmacology , Cell Proliferation/drug effects , Leukemia, Promyelocytic, Acute/drug therapy , Oxidative Stress/drug effects , Apoptosis/drug effects , Arsenic Trioxide , Caspase 3/genetics , Cytochromes c/genetics , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Oxides/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
15.
J Biol Chem ; 291(14): 7426-38, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26858254

ABSTRACT

The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation.


Subject(s)
Apoptosis , Metaphase , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Proteolysis , Separase/metabolism , Spermatocytes/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Animals , Cell Cycle Proteins , DNA-Binding Proteins , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , Phosphoproteins/genetics , Separase/genetics
16.
Huan Jing Ke Xue ; 35(7): 2579-84, 2014 Jul.
Article in Chinese | MEDLINE | ID: mdl-25244840

ABSTRACT

The aim of the study was to explore whether the pre-pressure and coagulation sedimentation process would result in algal cell disruption, leading to increased dissolved organic carbon (DOC) in water, based on which, the pressure application mode would be optimized and safe and efficient pre-pressure algae removal process would be obtained. The changes in DOC during the process of pre-pressure and preoxidation treatment, the distribution of molecular weight in water as well as the removal efficiency of algae, turbidity and DOC after coagulation and sedimentation were investigated. The results showed that the DOC in water did not increase but decreased, and the molecular weight decreased after treated with 0.5-0.8 MPa pressure. While KMnO4 and NaClO pre-oxidation both increased the DOC, in the meanwhile, the distribution of molecular weight showed no obvious change. After the pre-pressure coagulation and sedimentation process, the removal rate of algae was 96.23% and that of DOC was 29. 11%, which was by 10% - 30% higher than the rate of pre-oxidation coagulation and sedimentation process.


Subject(s)
Carbon/analysis , Water Purification/methods , Water/chemistry , Environmental Monitoring , Oxidation-Reduction
17.
Huan Jing Ke Xue ; 35(11): 4171-5, 2014 Nov.
Article in Chinese | MEDLINE | ID: mdl-25639091

ABSTRACT

Pressure enhanced coagulation and sedimentation technique is an effective way for blue algae treatment. It is not clear whether Cyanobacteria balloon rupture will cause Cyanobacteria cells rupture, resulting in high intracellular concentrations of microcystin LR leak into the water, affecting drinking water safety. Therefore, in this study experimental comparative study of pressure and pre-oxidation of water containing Cyanobacteria was carried out to examine the microcystin LR concentration changes and Cyanobacteria removal efficiency. The results showed that microcystin concentration increase was not significant by the pre-treatment with Cyanobacteria water pressure, while the pre-oxidation process caused a significant increase in the concentration of microcystin. After 0.5-0.8 MPa pressure coagulation and sedimentation, removal of Cyanobacteria basically was over 90%, up to 93.5%, while the removal rate by pre-oxidation was low and unstable. Effluent turbidity is also significantly better in the pre-pressure method than the pre-oxidation. The results indicated that pressure enhanced coagulation is a safe and reliable method for Cyanobacteria removal.


Subject(s)
Cyanobacteria/isolation & purification , Drinking Water/chemistry , Microcystins/analysis , Water Purification/methods , Drinking Water/microbiology , Marine Toxins , Oxidation-Reduction , Pressure , Water Supply
18.
Huan Jing Ke Xue ; 34(5): 1930-6, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23914550

ABSTRACT

An acidophilic iron-sulfur oxidizing bacterium LY01 was isolated from acid mine drainage of coal in Guizhou Province, China. Strain LY01 was identified as Acidithiobacillusferrooxidans by morphological and physiological characteristics, and phylogenetic analysis of its 16S rRNA gene sequence. Strain LY01 was able to grow using ferrous ion (Fe2+), elemental sulfur (S0) and pyrite as sole energy source, respectively, but significant differences in oxidation efficiency and bacterial growth were observed when different energy source was used. When strain LY01 was cultured in 9K medium with 44.2 g x L(-1) FeSO4.7H2O as the substrate, the oxidation efficiency of Fe2+ was 100% in 30 h and the cell number of strain LY01 reached to 4.2 x 10(7) cell x mL(-1). When LY01 was cultured in 9K medium with 10 g x L(-1) S0 as the substrate, 6.7% S0 oxidation efficiency, 2001 mg x L(-1) SO4(2-) concentration and 8.9 x 10(7) cell x mL(-1) cell number were observed in 21 d respectively. When LY01 was cultured with 30 g x L(-1) pyrite as the substrate, the oxidation efficiency of pyrite, SO4(2-) concentration and cell number reached 10%, 4443 mg x L(-1) and 3.4 x 10(8) cell x mL(-1) respectively in 20 d. The effects of different heavy metals (Ni2+, Pb2+) on oxidation activity of strain LY01 cultured with pyrite were investigated. Results showed that the oxidation activity of strain LY01 was inhibited to a certain extent with the addition of Ni2+ at 10-100 mg x L(-1) to the medium, but the addition of 10-100 mg x L(-1) Pb2+ had no effect on LY01 activity.


Subject(s)
Acidithiobacillus/metabolism , Iron/metabolism , Sulfur/metabolism , Wastewater/microbiology , Acidithiobacillus/isolation & purification , Biodegradation, Environmental , China , Coal , Ferrous Compounds/metabolism , Mining , Oxidation-Reduction , Sulfur/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...