Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Horm Metab Res ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471571

ABSTRACT

Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.

2.
Int J Biol Macromol ; 235: 123915, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36871694

ABSTRACT

The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.


Subject(s)
Bacillus thuringiensis , Moths , Platyhelminths , Animals , Spodoptera/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , Insecta/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Endotoxins/metabolism
3.
Insect Sci ; 30(3): 650-660, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36305760

ABSTRACT

The oriental armyworm, Mythimna separata, is a major long-distance migratory insect pest of grain crops in China and other Asian countries. Migratory flights and reproductive behavior usually occur at night, regulated by a circadian rhythm. However, knowledge about the linkages between adult flight, reproduction, and clock genes is still incomplete. To fill this important gap in our knowledge, a clock gene (designated Msper) was identified and phylogenetic analysis indicated that the encoded protein (MsPER) was highly similar to PER proteins from other insect species. Quantitative RT-PCR assays demonstrated that significantly different spatiotemporal and circadian rhythmic accumulations of mRNA encoding MsPER occurred during development under steady 14 h : 10 h light : dark conditions. The highest mRNA accumulation occurred in adult antennae and the lowest in larvae. Msper was expressed rhythmically in adult antennae, relatively less in photophase and more entering scotophase. Injecting small interference RNA (siRNA) into adult heads effectively knocked down Msper mRNA levels within 72 h. Most siRNA-injected adults reduced their evening flight activity significantly and did not exhibit a normal evening peak of flight activity. They also failed to mate and lay eggs within 72 h. Adult mating behavior was restored to control levels by 72 h post injection. We infer that Msper is a prominent clock gene that acts in regulating adult migratory flight and mating behaviors of M. separata. Because of its influence on migration and mating, Msper may be a valuable gene to target for effective management of this migratory insect.


Subject(s)
Moths , Animals , Spodoptera/genetics , Phylogeny , RNA, Double-Stranded , Reproduction , RNA, Small Interfering , RNA, Messenger
4.
Cell Rep ; 41(12): 111843, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543122

ABSTRACT

The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.


Subject(s)
Moths , Animals , Spodoptera/genetics , Moths/genetics , Transcriptome , Receptors, Cell Surface/genetics
5.
Front Pharmacol ; 13: 1011608, 2022.
Article in English | MEDLINE | ID: mdl-36339561

ABSTRACT

The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE's in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes.

6.
Biomaterials ; 287: 121678, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35853361

ABSTRACT

Fibromyalgia (FM), the most common cause of chronic musculoskeletal pain in the general public, lacks advanced therapeutic methodology and detailed bioinformation. However, acting as a newly developed and important transition metal carbide or carbonitride, the Mo2C nanozyme has provided a novel iatrotechnique with excellent bioactivity in a cell/animal model, which also exhibits potential prospects for future clinical applications. In addition, high-content and high-throughput integrated metabolomics (including aqueous metabolomics, lipidomics, and desorption electrospray ionization-mass spectrometry imaging) also specializes in qualitative and quantitative analysis of metabolic shifts at the molecular level. In this work, the FM-alleviation effect of Mo2C nanozyme was investigated through integrated metabolomics in a mouse model. An advanced platform combining gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry and bioinformatics was utilized to study the variation in the mouse metabolome and lipidome. The results revealed that Mo2C treatment could effectively enhance energy metabolism-related biological events impaired by FM, leading to homeostasis of oxidative stress and energy metabolism toward the control levels. During this process, Mo2C facilitated the elimination of ROS in plasma and cells and the rehabilitation of mice from oxidative stress and mitochondrial dysfunction. It was believed that such an integrated metabolomics study on the FM-alleviation effect of Mo2C nanozyme could provide another excellent alternative to traditional Mo2C-based research with numerous pieces of bioinformation, further supporting research area innovation, material modification, and clinical application.

7.
Biotechnol Biofuels Bioprod ; 15(1): 78, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35831866

ABSTRACT

BACKGROUND: Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. RESULTS: A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL-1 and 1265.58 UL-1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL-1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography-mass spectrometry (GC-MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. CONCLUSIONS: Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the ß-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate-CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion.

8.
Food Funct ; 13(14): 7871-7884, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35771162

ABSTRACT

The hypoglycemic and metabolic effects of Ficus racemosa fruit were studied in diabetic mice, and its potential mechanisms of hypoglycemic activity and its alleviation of diabetic complications were explored using a metabolomics approach. The histopathological effect of Ficus racemosa fruit was characterized by hematoxylin and eosin histological staining. Dynamic fasting blood glucose (FBG), postprandial glucose (PPG), body weight, and biochemical parameters, including hepatic-renal function and lipid levels, were monitored to confirm the hypoglycemic activity and attenuation effect. The metabolomics analysis was performed using the established platform, combining liquid chromatography-tandem mass spectrometry with statistical analysis to identify the metabolites internally regulated by Ficus racemosa fruit. Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was employed to explore the presence and spatial distribution patterns of differential molecules further. An inhibition of blood glucose levels and improvements in tissue lesions were observed after Ficus racemosa fruit treatment, especially with high-dose treatment. Ficus racemosa fruit primarily induced metabolomic alterations in amino acids, organic acids and nucleotides, and displayed a systematic effect, which involved the mediation of amino acid metabolism, glucose metabolism, energy metabolism and lipid accumulation. The effect of Ficus racemosa fruit on the liver was primarily discussed in this study, and it regulated purine metabolism, glycolysis/gluconeogenesis, arginine biosynthesis, histidine metabolism, alanine, aspartate and glutamate metabolism, and the citrate cycle. Through the mediation of related pathways or single molecules that could affect insulin resistance, insulin secretion or FBG, e.g., the amino acid histidine or the organic acid uric acid in the liver, Ficus racemosa fruit achieved its hypoglycemic effect and alleviated diabetic complications in the liver. The results of the tissue metabolomic analysis, histopathological analysis, plasma biochemical parameters, plasma metabolite analysis and tissue DESI-MSI analysis were consistent with one another. The present study provides the evidence of the hypoglycemic effect and its alleviation of diabetic complications for Ficus racemosa fruit as well as the scientific support for its traditional use.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Ficus , Animals , Blood Glucose , Diabetes Complications/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ficus/chemistry , Fruit/metabolism , Histidine , Hypoglycemic Agents/pharmacology , Lipids/analysis , Mice , Plant Bark/chemistry , Plant Extracts/pharmacology
9.
Front Chem ; 10: 839470, 2022.
Article in English | MEDLINE | ID: mdl-35281567

ABSTRACT

Site-specific N-glycosylation characterization requires intact N-glycopeptide analysis based on suitable tandem mass spectrometry (MS/MS) method. Electron-transfer/higher-energy collisional dissociation (EThcD), stepped collision energy/higher-energy collisional dissociation (sceHCD), higher-energy collisional dissociation-product-dependent electron-transfer dissociation (HCD-pd-ETD), and a hybrid mass spectrometry fragmentation method EThcD-sceHCD have emerged as valuable approaches for glycoprotein analysis. However, each of them incurs some compromise, necessitating the systematic performance comparisons when applied to the analysis of complex clinical samples (e.g., plasma, urine, cells, and tissues). Herein, we compared the performance of EThcD-sceHCD with those previous approaches (EThcD, sceHCD, HCD-pd-ETD, and sceHCD-pd-ETD) in the intact N-glycopeptide analysis, and determined its applicability for clinical N-glycoproteomic study. The intact N-glycopeptides of distinct samples, namely, plasma from prostate cancer (PCa) patients, urine from immunoglobulin A nephropathy (IgAN) patients, human hepatocarcinoma cell line (HepG2), and thyroid tissues from thyroid cancer (TC) patients were analyzed by these methods. We found that EThcD-sceHCD outperformed other methods in the balance of depth and accuracy of intact N-glycopeptide identification, and sceHCD and EThcD-sceHCD have good complementarity. EThcD-sceHCD holds great potential for biomarker discovery from clinical samples.

11.
J Econ Entomol ; 115(1): 124-132, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34897490

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Smith), is an invasive pest of cereal crops that now inhabits southern China year-round. Cultivation of crops unsuitable as host plants has been an effective pest management strategy for some insect pests, but the effects of green manure crops on S. frugiperda have not been investigated. An age-stage two-sex life table and tethered flight performance of S. frugiperda reared on different green manure species were obtained, and a population dynamics model established. Developmental durations of stages, survival rates, and fecundities of S. frugiperda differed significantly depending on host plant. Larvae fed Astragalus sinicus L. did not complete development. Although some larvae fed Vicia villosa Roth and Vicia sativa L. completed development, generation time was significantly prolonged, egg production was halved, and net reproductive rate decreased to 31% and 3% of those reared on corn, respectively. Survival rates of early-instars fed V. villosa and V. sativa were significantly lower than those fed corn. Population dynamics projections over 90 d showed the number of generations of S. frugiperda fed on V. villosa and V. sativa was reduced compared to those reared on corn. Flight performance of S. frugiperda reared on V. villosa decreased significantly compared to corn. Our results show that the three green manure species are unsuitable host plants for S. frugiperda. Therefore, reduction of corn production in southern China through rotation with these green manure crops may be a feasible method of ecological management of this major corn pest in China.


Subject(s)
Manure , Moths , Animals , Fertility , Larva , Pest Control , Spodoptera , Zea mays
12.
ACS Appl Mater Interfaces ; 13(50): 59633-59648, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34881570

ABSTRACT

The biosynthesis of Au-Pd core-shell nanoparticles (NPs) with wild-type Escherichia coli (Au-Pd/E. coli) is an excellent newly established, environmentally friendly synthetic method for the fabrication of nanomaterials compared to traditional chemosynthesis. However, there is insufficient detailed bioinformation on the compatibility, metabolic process, and mechanism of this approach. Metabolomics approaches have provided an excellent alternative to numerous bioinformatics approaches for shedding light on the biological response of an organism exposed to external stimuli at the molecular level. In this study, two different doses (8 and 80 µg/mL) of Au-Pd/E. coli were applied to treat human umbilical vein endothelial cells (HUVECs). Gas chromatography/mass spectrometry coupled with bioinformatics was used to analyze the changes in the HUVEC metabolome after treatment. The results indicated the occurrence of nonsignificant acute cytotoxicity based on cell proliferation and apoptosis analysis, while high concentrations (80 µg/mL) of Au-Pd/E. coli induced dramatic changes in energy metabolism, revealing a notable inhibition of the tricarboxylic acid (TCA) cycle along with the enhancement of glycolysis, the pentose phosphate pathway, fatty acid biosynthesis, and lipid accumulation, which was correlated with mitochondrial dysfunction. The metabolomics results obtained for this novel Au-Pd/E. coli-cell system could broaden our knowledge of the biological effect of Au-Pd/E. coli and possibly reveal material modifications and technological innovations.


Subject(s)
Biocompatible Materials/metabolism , Escherichia coli/metabolism , Gold/metabolism , Metabolomics , Metal Nanoparticles/chemistry , Palladium/metabolism , Biocompatible Materials/chemistry , Escherichia coli/chemistry , Gold/chemistry , Materials Testing , Palladium/chemistry
13.
Front Immunol ; 12: 755568, 2021.
Article in English | MEDLINE | ID: mdl-34745128

ABSTRACT

Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host's immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.


Subject(s)
Chromatography, Liquid/methods , Glycosylation , HIV Envelope Protein gp120/metabolism , Tandem Mass Spectrometry/methods , Humans
14.
J Proteome Res ; 20(5): 2714-2724, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33856806

ABSTRACT

The metabolic and bioactivity effects of Eurycoma longifolia (Eucalyptus longifolia) in obesity treatment were studied in mice fed with a high-fat diet using a metabolomics approach. Aqueous extracts of E. longifolia were obtained via grinding, dissolving, and freeze-drying. The hepatic steatosis effect of E. longifolia was characterized by hematoxylin and eosin histological staining. External performance of the obesity-alleviation effect was monitored by measuring body and food weight. In addition, the metabolomics analysis of the E. longifolia-mice interaction system was performed using the established platform combining liquid chromatography-tandem mass spectrometry with statistical analysis. The presence and spatial distribution patterns of differential molecules were further evaluated through desorption electrospray ionization-mass spectrometry imaging. The results showed that E. longifolia played a vital role in downregulating lipid accumulation (especially triacylglycerols) and fatty acids biosynthesis together with enhanced lipid decomposition and healing in Bagg albino mice. During such a process, E. longifolia mainly induced metabolomic alterations of amino acids, organic acids, phospholipids, and glycerolipids. Moreover, under the experimental concentrations, E. longifolia induced more fluctuations of aqueous-soluble metabolites in the plasma and lipids in the liver than in the kidneys. This study provides an advanced alternative to traditional E. longifolia-based studies for evaluating the metabolic effects and bioactivity of E. longifolia through metabolomics technology, revealing potential technological improvement and clinical application.


Subject(s)
Eurycoma , Animals , Diet, High-Fat/adverse effects , Lipids , Metabolomics , Mice , Obesity/drug therapy , Plant Extracts/pharmacology
15.
J Chromatogr A ; 1642: 462041, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33721816

ABSTRACT

Cortex Lycii, as a kind of traditional Chinese medicines, have shown prospects in the prevention of diabetes and its complications. However, there is comparatively little information regarding the characterization of potentially hypoglycemic compounds derived from Cortex Lycii. In this study, we performed a global non-selective investigation of α-glucosidase inhibitors in Cortex Lycii based on a bioactivity-labeling high-resolution mass spectrometry-metabolomics method. Samples of Cortex Lycii were collected from different Chinese provinces and their ethyl acetate extracts were analyzed using an in vitro α-glucosidase inhibition assay for bioactivity-labeling. The ethyl acetate extracts were also subjected to liquid chromatography-mass spectrometry analysis and multivariate data analysis was subsequently conducted to identify correlations between the bioactivity measured from the enzyme-involved test and the profiles obtained based on high-resolution mass spectrometry. The variables contributing significantly to the separation of the more-active from the less-active samples were considered to indicate the potential target ions of active compounds. MS/MS fragment patterns and nuclear magnetic resonance analyses were used to identify the potential target ions. The developed platform mentioned above facilitated rapid identification of four α-glucosidase inhibitors, namely, N-p-trans-coumaroyltyramine (1), N-trans-caffeoyl-tyramine (2), (9R,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid (3a), and (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid (3b) from Cortex Lycii. The α-glucosidase inhibitory activities of compounds 3a and 3b with IC50 values of 1.0413±0.0551 and 1.0423±0.0049 mM, respectively, are reported here for the first time. Enzyme kinetics revealed that both 3a and 3b were non-competitive inhibitors of α-glucosidase, with Ki values of 2.20 and 2.24 mM, respectively. In short, the presented work identified compounds 3a and 3b as potential α-glucosidase inhibitors with higher inhibitory activity and a different mode of inhibition compared to the standard α-glucosidase inhibitor, acarbose. The integrated approach adopted in this study can be extended as a normalized procedure to rapidly identify active compounds, even from complex extracts, and can readily be adapted for the study of other natural products.


Subject(s)
Drugs, Chinese Herbal/chemistry , Glycoside Hydrolase Inhibitors/analysis , Mass Spectrometry , Metabolomics , Chromatography, High Pressure Liquid , Glycoside Hydrolase Inhibitors/chemistry , Inhibitory Concentration 50 , Ions , Kinetics , Magnetic Resonance Spectroscopy , Multivariate Analysis , Plant Extracts/chemistry , Principal Component Analysis , Reproducibility of Results , alpha-Glucosidases/metabolism
16.
Faraday Discuss ; 218(0): 202-218, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31119225

ABSTRACT

Medicinal plants have been widely used as (poly)pharmacological remedies and constitute a rich source for antidiabetic drug discovery. In the present study, forty medicinal plant samples collected in China were tested for inhibitory activity against α-glucosidase, α-amylase, and protein-tyrosine phosphatase 1B (PTP1B). Crude ethyl acetate extracts of Dioscorea bulbifera L., Boehmeria nivea Gaudich, Tinospora sagittata Gagnep. and Persicaria bistorta (L.) Samp. showed dual inhibitory activity towards α-glucosidase and PTP1B, and were chosen for further investigation. Subsequent dual high-resolution α-glucosidase/PTP1B profiling or triple high-resolution α-glucosidase/α-amylase/PTP1B profiling combined with HPLC-HRMS and NMR spectroscopy led to the identification of 28 metabolites with one or more bioactivities. Among these, three new phenanthrenes were identified from D. bulbifera, including one new biphenanthrene (10) exhibiting promising dual inhibitory activity towards α-glucosidase and PTP1B with IC50 values of 2.08 ± 0.19 and 3.36 ± 0.25 µM, respectively. Two triterpenoids and one fatty acid from B. nivea and T. sagittata as well as some commercially available fatty acids showed strong PTP1B inhibitory activity with IC50 values in the range of 4.89 ± 0.38 to 53.77 ± 4.20 µM.


Subject(s)
Complex Mixtures/chemistry , Drugs, Chinese Herbal/analysis , Hypoglycemic Agents/analysis , Plants, Medicinal/chemistry , China , Drugs, Chinese Herbal/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Medicine, Chinese Traditional , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
17.
J Econ Entomol ; 111(3): 1243-1248, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29635293

ABSTRACT

To understand the migratory flight behaviors of the loreyi leafworm, Mythimna loreyi Walker (Lepidoptera: Noctuidae), both tethered (flight distance, time, and velocity) and free-flight activity (flight action, duration, and frequency) of adults at different ages, sexes, and temperatures were investigated using computer-controlled insect flight mills and an autonomous flight monitoring system. Tethered flight activity differed significantly among ages and rearing temperature, but not sex. Newly emerged adults (the first day after emergence) displayed the lowest flight time, distance, and speed. However, flight performance increased with age, peaking at 3 d. Relatively strong flight performance was maintained up to 5 d postemergence and then declined significantly by day 6. There was no significant difference in flight performance between sexes for 3-d-old moths. Adults reared as larvae at 24°C averaged significantly longer flight duration and distance than those reared at other temperatures. Both lower and higher rearing temperatures negatively affected tethered flight. Similar results among age and rearing temperature treatments were observed in autonomous free-flight tests. During 12-h free-flight tests, flight activity peaked from 6 to 10 h after beginning of darkness. Free-flight activity of 1- and 6-d-old adults was significantly less than that of 3-, 4-, and 5-d-old adults. Adults reared at 24°C showed significantly greater free-flight action, duration, and frequency than those reared at other temperatures. The results suggest that M. loreyi may be a migratory species.


Subject(s)
Flight, Animal , Moths/physiology , Age Factors , Animal Migration , Animals , Female , Male , Temperature
18.
J Econ Entomol ; 110(4): 1583-1591, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28541530

ABSTRACT

The Mythimna (=Leucania) loreyi (Duponchel) has recently emerged as a major pest of grain crops in China. Little is known about its basic biology and ecology, making it difficult to predict its population dynamics. An age-stage, two-sex life table was constructed for this insect when reared on maize in the laboratory at five constant temperatures (18, 21, 24, 27, and 30 °C). Both the intrinsic rate of increase (r) and finite rate increase (λ) increased as temperature significantly increased and mean generation time (T) decreased significantly with increasing temperature. The highest values for net reproductive rate (R0) and fecundity were observed at 24 °C. However, M. loreyi was able to develop, survive, and lay eggs at all temperatures tested (18-30 °C). Development rates at different temperatures for the egg, larval, pupal, as well as for a total preoviposition period, fit a linear equation. The lower threshold temperatures of egg, larval, pupal, preoviposition, and total preoviposition period were 8.83, 10.95, 11.67, 9.30, and 9.65 °C, respectively. And their effective accumulated temperatures were 87.64, 298.51, 208.33, 66.47, and 729.93 degree-days, respectively. This study provides insight into the temperature-based phenology and population ecology in M. loreyi. The results will benefit population dynamics monitoring, prediction, and management of this insect pest in the field.


Subject(s)
Moths/physiology , Animals , Female , Larva/growth & development , Larva/physiology , Life Tables , Male , Moths/growth & development , Ovum/growth & development , Ovum/physiology , Population Dynamics , Pupa/growth & development , Pupa/physiology , Reproduction , Temperature
19.
Molecules ; 22(3)2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28272319

ABSTRACT

Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Metabolomics , Principal Component Analysis , Proton Magnetic Resonance Spectroscopy , Astragalus propinquus , Chromatography, High Pressure Liquid , Enzyme Activation/drug effects , Glycoside Hydrolase Inhibitors/pharmacology , Inhibitory Concentration 50 , Metabolomics/methods , alpha-Glucosidases/chemistry
20.
Phytochemistry ; 119: 62-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386983

ABSTRACT

Inhibition of the necrotizing hyaluronidase, phospholipase A2 and protease enzymes in four snake venoms by crude water and ethanol extracts of 88 plant species used against snakebites in traditional Chinese medicine was measured. High-resolution hyaluronidase inhibition profiles were constructed for the 22 plants showing highest hyaluronidase inhibition, and the results were used to guide subsequent structural analysis towards specific hyaluronidase inhibitors. Structural analysis was performed by high-performance liquid chromatography, high-resolution mass spectrometry, solid-phase extraction and nuclear magnetic resonance spectroscopy, i.e., HPLC-HRMS-SPE-NMR. This allowed identification of four non-tannin inhibitors, i.e., lansiumamide B (6) from Clausena excavata Burm.f., myricetin 3-O-ß-D-glucopyranoside (7) from Androsace umbellata (Lour.) Merr., and vitexin (8) and 4',7-dihydroxy-5-methoxyflavone-8-C-ß-D-glucopyranoside (9) from Oxalis corniculata L. Absolute configuration of 2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide (1) was determined using the Mosher method, which revealed two enantiomers, i.e., (2S,3R)-2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide and (2R,3S)-2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide with a ratio of 7:3.


Subject(s)
Hyaluronoglucosaminidase/antagonists & inhibitors , Phospholipase A2 Inhibitors/isolation & purification , Phospholipase A2 Inhibitors/pharmacology , Snake Bites/drug therapy , Tannins/isolation & purification , Tannins/pharmacology , Apigenin/isolation & purification , Chromatography, High Pressure Liquid , Glycoside Hydrolase Inhibitors/chemistry , Hyaluronoglucosaminidase/metabolism , Medicine, Chinese Traditional , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oxalidaceae/chemistry , Phospholipase A2 Inhibitors/chemistry , Plant Extracts/chemistry , Solid Phase Extraction , Tannins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...