Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798582

ABSTRACT

Recurrent neural networks exhibit chaotic dynamics when the variance in their connection strengths exceed a critical value. Recent work indicates connection variance also modulates learning strategies; networks learn "rich" representations when initialized with low coupling and "lazier" solutions with larger variance. Using Watts-Strogatz networks of varying sparsity, structure, and hidden weight variance, we find that the critical coupling strength dividing chaotic from ordered dynamics also differentiates rich and lazy learning strategies. Training moves both stable and chaotic networks closer to the edge of chaos, with networks learning richer representations before the transition to chaos. In contrast, biologically realistic connectivity structures foster stability over a wide range of variances. The transition to chaos is also reflected in a measure that clinically discriminates levels of consciousness, the perturbational complexity index (PCIst). Networks with high values of PCIst exhibit stable dynamics and rich learning, suggesting a consciousness prior may promote rich learning. The results suggest a clear relationship between critical dynamics, learning regimes and complexity-based measures of consciousness.

2.
ArXiv ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37873007

ABSTRACT

In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.

3.
ArXiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045480

ABSTRACT

Training networks consisting of biophysically accurate neuron models could allow for new insights into how brain circuits can organize and solve tasks. We begin by analyzing the extent to which the central algorithm for neural network learning -- stochastic gradient descent through backpropagation (BP) -- can be used to train such networks. We find that properties of biophysically based neural network models needed for accurate modelling such as stiffness, high nonlinearity and long evaluation timeframes relative to spike times makes BP unstable and divergent in a variety of cases. To address these instabilities and inspired by recent work, we investigate the use of "gradient-estimating" evolutionary algorithms (EAs) for training biophysically based neural networks. We find that EAs have several advantages making them desirable over direct BP, including being forward-pass only, robust to noisy and rigid losses, allowing for discrete loss formulations, and potentially facilitating a more global exploration of parameters. We apply our method to train a recurrent network of Morris-Lecar neuron models on a stimulus integration and working memory task, and show how it can succeed in cases where direct BP is inapplicable. To expand on the viability of EAs in general, we apply them to a general neural ODE problem and a stiff neural ODE benchmark and find again that EAs can out-perform direct BP here, especially for the over-parameterized regime. Our findings suggest that biophysical neurons could provide useful benchmarks for testing the limits of BP-adjacent methods, and demonstrate the viability of EAs for training networks with complex components.

4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34916291

ABSTRACT

Brains learn tasks via experience-driven differential adjustment of their myriad individual synaptic connections, but the mechanisms that target appropriate adjustment to particular connections remain deeply enigmatic. While Hebbian synaptic plasticity, synaptic eligibility traces, and top-down feedback signals surely contribute to solving this synaptic credit-assignment problem, alone, they appear to be insufficient. Inspired by new genetic perspectives on neuronal signaling architectures, here, we present a normative theory for synaptic learning, where we predict that neurons communicate their contribution to the learning outcome to nearby neurons via cell-type-specific local neuromodulation. Computational tests suggest that neuron-type diversity and neuron-type-specific local neuromodulation may be critical pieces of the biological credit-assignment puzzle. They also suggest algorithms for improved artificial neural network learning efficiency.


Subject(s)
Nerve Net/physiology , Neurons/physiology , Synapses/physiology , Computer Simulation , Learning/physiology , Ligands , Models, Neurological , Neural Networks, Computer , Neuronal Plasticity/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Spatio-Temporal Analysis , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...