Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
Article in English | MEDLINE | ID: mdl-38824209

ABSTRACT

Sponge city construction is an ideal approach to mitigate the degradation of urban water environments. Among road materials, permeable concrete pavement stands out due to its unique structure that allows rainwater runoff to flow through its pores. This paper analyzes the current application status and the prospect of different permeable pavement designs in China's sponge cities, aiming to offer valuable insights for urban planning and construction. Statistical analysis summarizes the spatial-temporal distribution patterns of urban flooding disasters in China and their causes. By comparing the characteristics and advantages of pervious concrete pavement with traditional concrete pavement, the potential of permeable concrete pavement in sponge city construction is summarized through case studies. The findings highlight that by adjusting the pore size, permeable concrete pavement can collect rainwater while filtering impurities, thereby purifying surface runoff. The range of the pervious coefficient should ideally fall within the range of 4~8 mm/s. In addition, the pavement's large contact area with the air and internal water evaporation contributes to its self-regulating capability, reducing the occurrence of extreme temperatures. Related experiments have shown that from 8 am to 12 pm, pervious concrete pavement can reduce the temperature by approximately 1 °C compared to conventional concrete. From 12 pm to 8 pm, this temperature difference increases to approximately 3 °C. To meet the needs of environmental protection and resource utilization, permeable concrete pavement can serve as an ideal tool to achieve green and low-carbon development.

2.
Nanomicro Lett ; 16(1): 210, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842604

ABSTRACT

Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.

3.
Opt Express ; 32(10): 17499-17513, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858932

ABSTRACT

Over years of space laser communication technology advances, satellite optical networks (SONs) have emerged as a pivotal component in 6 G networks. Satellite services are transmitted from the global view, undergoing transmission through SONs, and being downloaded to the targeted areas. However, the transmission capacity of satellites passing through the areas where users are concentrated may be insufficient to download services transmitted worldwide. This problem exists in various kinds of satellite networks and may cause a large amount of service congestion. In this paper, we propose a multi-downlink delivery routing selection (MDD-RS) strategy to study the total utilization of transmission capacity of SONs. We construct an integer linear programming (ILP) model to establish an optimal case study for minimal network capacity occupation. Also, we design an online option, MDD-RS heuristic algorithm, dynamically calculating path routes, considering bandwidth allocation and resource constraints. A comparative analysis against the conventional single-downlink scheme reveals superior performance of the MDD-RS heuristic algorithm, with a reduction in blocking probability of 0.129 and an improvement in bandwidth utilization of 0.032.

4.
Methods ; 228: 12-21, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759908

ABSTRACT

Annotating cell types of single-cell RNA sequencing (scRNA-seq) data is crucial for studying cellular heterogeneity in the tumor microenvironment. Recently, large-scale pre-trained language models (PLMs) have achieved significant progress in cell-type annotation of scRNA-seq data. This approach effectively addresses previous methods' shortcomings in performance and generalization. However, fine-tuning PLMs for different downstream tasks demands considerable computational resources, rendering it impractical. Hence, a new research branch introduces parameter-efficient fine-tuning (PEFT). This involves optimizing a few parameters while leaving the majority unchanged, leading to substantial reductions in computational expenses. Here, we utilize scBERT, a large-scale pre-trained model, to explore the capabilities of three PEFT methods in scRNA-seq cell type annotation. Extensive benchmark studies across several datasets demonstrate the superior applicability of PEFT methods. Furthermore, downstream analysis using models obtained through PEFT showcases their utility in novel cell type discovery and model interpretability for potential marker genes. Our findings underscore the considerable potential of PEFT in PLM-based cell type annotation, presenting novel perspectives for the analysis of scRNA-seq data.

5.
Photoacoustics ; 38: 100616, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38770433

ABSTRACT

This study highlights the potential of scanning optoacoustic angiography (OA) in identifying alterations of superficial vasculature in patients with post-thrombotic syndrome (PTS) of the foot, a venous stress disorder associated with significant morbidity developing from long-term effects of deep venous thrombosis. The traditional angiography methods available in the clinics are not capable of reliably assessing the state of peripheral veins that provide blood outflow from the skin, a key hallmark of personalized risks of PTS formation after venous thrombosis. Our findings indicate that OA can detect an increase in blood volume, diameter, and tortuosity of superficial blood vessels. The inability to spatially separate vascular plexuses of the dermis and subcutaneous adipose tissue serves as a crucial criterion for distinguishing PTS from normal vasculature. Furthermore, our study demonstrates the ability of scanning optoacoustic angiography to detect blood filling decrease in an elevated limb position versus increase in a lowered position.

7.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692247

ABSTRACT

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Subject(s)
Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
9.
Cardiol Res Pract ; 2024: 3131633, 2024.
Article in English | MEDLINE | ID: mdl-38799173

ABSTRACT

Background: Cardiomyopathy encompasses a broad spectrum of diseases affecting myocardial tissue, characterized clinically by abnormalities in cardiac structure, heart failure, and/or arrhythmias. Clinically heterogeneous, major types include dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RM), ischemic cardiomyopathy (ICM), among which DCM is more prevalent, while ICM exhibits higher incidence and mortality rates. Myocardial injury during cardiomyopathy progression may lead to myocardial fibrosis. Failure to intervene early and inhibit the process of myocardial fibrosis may culminate in heart failure. Cardiac fibroblasts constitute crucial cellular components determining the extent and quality of myocardial fibrosis, with various subpopulations exerting diverse roles in cardiomyopathy progression. Despite this, understanding of the cellular plasticity and transcriptional regulatory networks of cardiac fibroblasts in cardiomyopathy remains limited. Therefore, in this study, we conducted comprehensive single-cell analysis of cardiac fibroblasts in cardiomyopathy to explore differences in cellular plasticity and transcriptional regulatory networks among fibroblast subpopulations, with the aim of providing as many useful references as possible for the diagnosis, prognosis, and treatment of cardiomyopathy. Materials and Methods: Cells with mitochondrial gene expression comprising >20% of total expressed genes were excluded. Differential expression genes (DEGs) and stemness genes within cardiac fibroblast subpopulations were subjected to Gene Ontology (GO) analysis of biological processes (BP) and AUCell analysis. Monocle software was employed to analyze the pseudo-temporal trajectory of cardiac fibroblasts in cardiomyopathy. Additionally, the Python package SCENIC was utilized to assess enrichment of transcription factors and activity of regulators within cardiac fibroblast subpopulations in cardiomyopathy. Results: Following batch effect correction, 179,927 cells were clustered into 32 clusters, designated as T_NK cells, endothelial cells, myeloid cells, fibroblasts, pericytes, SMCs, CMs, proliferating cells, EndoCs, and EPCs. Among them, 8148 fibroblasts were further subdivided into 4 subpopulations, namely C0 THBS4+ Fibroblasts, C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts, and C3 AGT + Fibroblasts. Results from GO_BP and AUCell analyses suggest that C3 AGT + Fibroblasts may be associated with immune response activation, protein transport, and myocardial contractile function, correlating with disease progression in cardiomyopathy. Transcription factor enrichment analysis indicates that FOS is the most significant TF in C3 AGT + Fibroblasts, also associated with the M1 module, possibly implicated in protein hydrolysis, intracellular DNA replication, and cell proliferation. Moreover, correlation analysis of transcriptional regulatory activity between fibroblast subpopulations reveals a more pronounced heterogeneity within C3 AGT + Fibroblasts in cardiomyopathy. Conclusion: C3 AGT + Fibroblasts exhibit increased sensitivity towards adverse outcomes in cardiomyopathy, such as myocardial fibrosis and impaired cardiac contractile function, compared to other cardiac fibroblast subpopulations. The differential cellular plasticity and transcriptional regulatory activity between C3 AGT + Fibroblasts and other subgroups offer new perspectives for targeting fibroblast subpopulation activity to treat cardiomyopathy. Additionally, stemness genes EPAS1 and MYC, along with the regulator FOS, may play roles in modulating the biological processes of cardiac fibroblasts in cardiomyopathy.

10.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792200

ABSTRACT

Electrochemical oxidation of ammonia is an attractive process for wastewater treatment, hydrogen production, and ammonia fuel cells. However, the sluggish kinetics of the anode reaction has limited its applications, leading to a high demand for novel electrocatalysts. Herein, the electrode with the in situ growth of NiCu(OH)2 was partially transformed into the NiCuOOH phase by a pre-treatment using highly oxidative solutions. As revealed by SEM, XPS, and electrochemical analysis, such a strategy maintained the 3D structure, while inducing more active sites before the in situ generation of oxyhydroxide sites during the electrochemical reaction. The optimized NiCuOOH-1 sample exhibited the current density of 6.06 mA cm-2 at 0.5 V, which is 1.67 times higher than that of NiCu(OH)2 (3.63 mA cm-2). Moreover, the sample with a higher crystalline degree of the NiCuOOH phase exhibited lower performance, demonstrating the importance of a moderate treatment condition. In addition, the NiCuOOH-1 sample presented low selectivity (<20%) towards NO2- and stable activity during the long-term operation. The findings of this study would provide valuable insights into the development of transition metal electrocatalysts for ammonia oxidation.

12.
Adv Mater ; : e2403818, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794816

ABSTRACT

Lithium-ion batteries (LIBs) are rapidly developing into attractive energy storage technologies. As LIBs gradually enter retirement, their sustainability is starting to come into focus. The utilization of recycled spent LIBs as raw materials for battery manufacturing is imperative for resource and environmental sustainability. The sustainability of spent LIBs depends on the recycling process, whereby the cycling of battery materials must be maximized while minimizing waste emissions and energy consumption. Although LIB recycling technologies (hydrometallurgy and pyrometallurgy) have been commercialized on a large scale, they have unavoidable limitations. They are incompatible with circular economy principles because they require toxic chemicals, emit hazardous substances, and consume large amounts of energy. The direct regeneration of degraded electrode materials from spent LIBs is a viable alternative to traditional recycling technologies and is a nondestructive repair technology. Furthermore, direct regeneration offers advantages such as maximization of the value of recycled electrode materials, use of sustainable, nontoxic reagents, high potential profitability, and significant application potential. Therefore, this review aims to investigate the state-of-the-art direct LIB regeneration technologies that can be extended to large-scale applications.

13.
J Neurol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717610

ABSTRACT

OBJECTIVE: To determine the efficacy and safety of perampanel (PER) as an adjunctive therapy in children aged 4-12 years with epilepsy. METHODS: We performed a non-randomized, open-label, placebo-uncontrolled, real-world self-controlled study that included 216 young children (aged 4-12 years) with epilepsy who received PER as adjunctive therapy at the children's hospital affiliated with Chongqing Medical University from July 4, 2020, to September 20, 2023. RESULTS: (1) The efficacy rates of adjunctive PER therapy at 3, 6, 9, and 12 months were 62.8%, 67.8%, 65.3%, and 61.2%, respectively. PER showed efficacy in alleviating focal seizures, generalized tonic-clonic seizures, myoclonic seizures, and absence seizures. The efficacy rates for variants of self-limited epilepsy with centrotemporal spikes (SeLECTS) and Lennox-Gastaut syndrome (LGS) were 89.5% and 66.7%, respectively. (2) Focal non-motor onset seizures with or without impaired awareness, focal to bilateral tonic-clonic seizures (FBTCS), LGS, variants of SeLECTS, the number of concomitant antiseizure medications (ASMs), a family history of epilepsy, and focal lesions on cranial magnetic resonance imaging were independent factors affecting efficacy. The order of PER addition did not affect efficacy. The retention rates at 3, 6, 9, and 12 months were 90.7%, 84.7%, 74.7%, 64.9%, respectively. (3) Adverse reactions occurred in 45 patients (45/216, 20.8%), with irritability/aggressive behavior (18/216, 8.3%) and somnolence (14/216, 6.5%) being the most common. Twelve patients (12/216, 5.6%) withdrew from the study because of adverse reactions. CONCLUSION: In young Chinese children with epilepsy, PER is effective, safe, and well-tolerated as an adjunctive therapy, making it a viable option for use with broad-spectrum ASMs.

14.
Heliyon ; 10(9): e30462, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720745

ABSTRACT

Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.

15.
Med Biol Eng Comput ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658497

ABSTRACT

The assessment of deformable registration uncertainty is an important task for the safety and reliability of registration methods in clinical applications. However, it is typically done by a manual and time-consuming procedure. We propose a novel automatic method to predict registration uncertainty based on multi-category features and supervised learning. Three types of features, including deformation field statistical features, deformation field physiologically realistic features, and image similarity features, are introduced and calculated to train the random forest regressor for local registration uncertain prediction. Deformation field statistical features represent the numerical stability of registration optimization, which are correlated to the uncertainty of deformation fields; deformation field physiologically realistic features represent the biomechanical properties of organ motions, which mathematically reflect the physiological reality of deformation; image similarity features reflect the similarity between the warped image and fixed image. The multi-category features comprehensively reflect the registration uncertainty. The strategy of spatial adaptive random perturbations is also introduced to accurately simulate spatial distribution of registration uncertainty, which makes deformation field statistical features more discriminative to the uncertainty of deformation fields. Experiments were conducted on three publicly available thoracic CT image datasets. Seventeen randomly selected image pairs are used to train the random forest model, and 9 image pairs are used to evaluate the prediction model. The quantitative experiments on lung CT images show that the proposed method outperforms the baseline method for uncertain prediction of classical iterative optimization-based registration and deep learning-based registration with different registration qualities. The proposed method achieves good performance for registration uncertain prediction, which has great potential in improving the accuracy of registration uncertain prediction.

16.
Nat Commun ; 15(1): 3641, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684736

ABSTRACT

Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.

17.
Int J Biol Macromol ; 267(Pt 2): 131538, 2024 May.
Article in English | MEDLINE | ID: mdl-38621572

ABSTRACT

Lignin is continuously investigated by various techniques for valorization due to its high content of oxygen-containing functional groups. Catalytic systems employing hydrolysis­hydrogenolysis, leveraging the synergistic effect of redox metal sites and acid sites, exhibit efficient degradation of lignin. The predominance of either hydrolysis or hydrogenolysis reactions hinges upon the relative activity of acid and metal sites, as well as the intensity of the reductive atmosphere. In this study, the Pd-MoOx/TiO2 catalyst was found to primarily catalyze hydrolysis in the lignin depolymerization process, attributed to the abundance of moderate acidic sites on Pd and the redox-assisted catalysis of MoOx under inert conditions. After subjecting the reaction to 240 °C for 30 h, a yield of 48.22 wt% of total phenolic monomers, with 5.90 wt% consisting of diphenols, was achieved. Investigation into the conversion of 4-propylguaiacol (4-PG), a major depolymerized monomer of corncob lignin, revealed the production of ketone intermediates, a phenomenon closely linked to the unique properties of MoOx. Dehydrogenation of the propyl is a key step in initiating the reaction, and 4-PG could be almost completely transformed, accompanied by an over 97 % of 4-propylcatechol selectivity. This distinctive system lays a new theoretical groundwork for the eco-friendly valorization of lignin.


Subject(s)
Lignin , Palladium , Titanium , Lignin/chemistry , Hydrolysis , Catalysis , Titanium/chemistry , Palladium/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Oxidation-Reduction , Oxides/chemistry
18.
Angew Chem Int Ed Engl ; : e202402070, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664999

ABSTRACT

Electrochemical CO2 reduction reaction (CO2RR) offers a sustainable strategy for producing fuels and chemicals. However, it suffers from sluggish CO2 activation and slow water dissociation. In this work, we construct a (P-O)δ- modified In catalyst that exhibits high activity and selectivity in electrochemical CO2 reduction to formate. A combination of in situ characterizations and kinetic analyses indicate that (P-O)δ- has a strong interaction with K+(H2O)n, which effectively accelerates water dissociation to provide protons. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) measurements together with density functional theory (DFT) calculations disclose that (P-O)δ- modification leads to a higher valence state of In active site, thus promoting CO2 activation and HCOO* formation, while inhibiting competitive hydrogen evolution reaction (HER). As a result, the (P-O)δ- modified oxide-derived In catalyst exhibits excellent formate selectivity across a broad potential window with a formate Faradaic efficiency as high as 92.1 % at a partial current density of ~200 mA cm-2 and a cathodic potential of -1.2 V vs. RHE in an alkaline electrolyte.

19.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612925

ABSTRACT

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Subject(s)
Populus , Haploidy , Phylogeny , Populus/genetics , Ethylenes
20.
Front Pharmacol ; 15: 1361838, 2024.
Article in English | MEDLINE | ID: mdl-38576487

ABSTRACT

Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory. The study showed that immediately administering rimonabant after conditioned stimuli (CS) exposure reduced the cue- and herion + cue-induced heroin-seeking behavior. The inhibitory effects lasted for a minimum of 28 days. The effect of Rimonabant on reduced drug-seeking was not shown when treated without CS exposure or 6 hours after CS exposure. These results demonstrate a disruptive role of rimonabant on the reconsolidation of heroin-associated memory and the therapeutic potential in relapse control concerning substance use disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...