Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39013587

ABSTRACT

BACKGROUND AND AIM: Helicobacter pylori infection is linked to various gastrointestinal conditions, such as chronic active gastritis, peptic ulcers, and gastric cancer. Traditional treatment options encounter difficulties due to antibiotic resistance and adverse effects. Therefore, the aim of this study was to explore the effectiveness of a new treatment plan that combines vonoprazan (VPZ), amoxicillin, and bismuth for the eradication of H. pylori. METHODS: A total of 600 patients infected with H. pylori were recruited for this multicenter randomized controlled trial. Patients treated for H. pylori elimination were randomly assigned at a 1:1 ratio to receive 14 days of vonoprazan-based triple therapy (vonoprazan + amoxicillin + bismuth, group A) or standard quadruple therapy (esomeprazole + clarithromycin + amoxicillin + bismuth, group B). Compliance and adverse effects were tracked through daily medication and side effect records. All patients underwent a 13C/14C-urea breath test 4 weeks after treatment completion. RESULTS: Intention-to-treat (ITT) and per-protocol (PP) analyses revealed no substantial differences in H. pylori eradication rates between groups A and B (ITT: 83.7% vs 83.2%; PP: 90.9% vs 89.7%). However, significant differences were observed in the assessment of side effects (13.7% vs 28.6%, P < 0.001). Specifically, group A had significantly fewer "bitter mouths" than group B did (3.7% vs 16.2%, P < 0.001). CONCLUSION: Triple therapy comprising vonoprazan (20 mg), amoxicillin (750 mg), and bismuth potassium citrate (220 mg) achieved a PP eradication rate ≥90%, paralleling standard quadruple therapy, and had fewer adverse events and lower costs (¥306.8 vs ¥645.8) for treatment-naive patients.

2.
Cancer Discov ; 14(2): 326-347, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37824278

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy because of its aggressive nature and the paucity of effective treatment options. Almost all registered drugs have proven ineffective in addressing the needs of patients with PDAC. This is the result of a poor understanding of the unique tumor-immune microenvironment (TME) in PDAC. To identify druggable regulators of immunosuppressive TME, we performed a kinome- and membranome-focused CRISPR screening using orthotopic PDAC models. Our data showed that receptor-interacting protein kinase 2 (RIPK2) is a crucial driver of immune evasion of cytotoxic T-cell killing and that genetic or pharmacologic targeting of RIPK2 sensitizes PDAC to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy, leading to prolonged survival or complete regression. Mechanistic studies revealed that tumor-intrinsic RIPK2 ablation disrupts desmoplastic TME and restores MHC class I (MHC-I) surface levels through eliminating NBR1-mediated autophagy-lysosomal degradation. Our results provide a rationale for a novel combination therapy consisting of RIPK2 inhibition and anti-PD-1 immunotherapy for PDAC. SIGNIFICANCE: PDAC is resistant to almost all available therapies, including immune checkpoint blockade. Through in vivo CRISPR screen, we identified that RIPK2 plays a crucial role in facilitating immune evasion by impeding antigen presentation and cytotoxic T-cell killing. Targeting tumor-intrinsic RIPK2 either genetically or pharmacologically improves PDAC to anti-PD-1 immunotherapy. See related commentary by Liu et al., p. 208 . This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunotherapy , T-Lymphocytes, Cytotoxic/metabolism , Protein Kinases , Tumor Microenvironment
3.
World J Gastrointest Oncol ; 15(6): 1036-1050, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37389112

ABSTRACT

BACKGROUND: Perihilar cholangiocarcinoma (pCCA) has a poor prognosis and urgently needs a better predictive method. The predictive value of the age-adjusted Charlson comorbidity index (ACCI) for the long-term prognosis of patients with multiple malignancies was recently reported. However, pCCA is one of the most surgically difficult gastrointestinal tumors with the poorest prognosis, and the value of the ACCI for the prognosis of pCCA patients after curative resection is unclear. AIM: To evaluate the prognostic value of the ACCI and to design an online clinical model for pCCA patients. METHODS: Consecutive pCCA patients after curative resection between 2010 and 2019 were enrolled from a multicenter database. The patients were randomly assigned 3:1 to training and validation cohorts. In the training and validation cohorts, all patients were divided into low-, moderate-, and high-ACCI groups. Kaplan-Meier curves were used to determine the impact of the ACCI on overall survival (OS) for pCCA patients, and multivariate Cox regression analysis was used to determine the independent risk factors affecting OS. An online clinical model based on the ACCI was developed and validated. The concordance index (C-index), calibration curve, and receiver operating characteristic (ROC) curve were used to evaluate the predictive performance and fit of this model. RESULTS: A total of 325 patients were included. There were 244 patients in the training cohort and 81 patients in the validation cohort. In the training cohort, 116, 91 and 37 patients were classified into the low-, moderate- and high-ACCI groups. The Kaplan-Meier curves showed that patients in the moderate- and high-ACCI groups had worse survival rates than those in the low-ACCI group. Multivariable analysis revealed that moderate and high ACCI scores were independently associated with OS in pCCA patients after curative resection. In addition, an online clinical model was developed that had ideal C-indexes of 0.725 and 0.675 for predicting OS in the training and validation cohorts. The calibration curve and ROC curve indicated that the model had a good fit and prediction performance. CONCLUSION: A high ACCI score may predict poor long-term survival in pCCA patients after curative resection. High-risk patients screened by the ACCI-based model should be given more clinical attention in terms of the management of comorbidities and postoperative follow-up.

4.
Zhongguo Zhong Yao Za Zhi ; 47(18): 5052-5063, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164915

ABSTRACT

Dangefentong Capsules is a new traditional Chinese medicine preparation for the treatment of diabetic peripheral neuropathy. It is based on the Salviae Miltiorrhizae Radix et Rhizoma-Puerariae Lobatae Radix herb pair with salvianolic acids, tanshinones and pueraria flavonoids as main components. Studying the chemical composition in vivo of Dangefentong Capsules and its metabolites is of great significance for making clear its pharmacodynamic material basis and the action mechanism. The UHPLC-Q/Orbitrap-MS/MS was applied to rapidly analyze the metabolites and metabolic pathways of Dangefentong Capsules in Beagle dogs after gavage. Eclipse plus C_(18) column(2.1 mm×50 mm, 1.8 µm) was used, and gradient elution was performed with 0.1% formic acid aqueous solution(A)-formic acid acetonitrile solution(B). A heated electrospray ion source(HESI) was employed. The scanning mode was set as the positive and negative ion mode, and the mass scanning range was m/z 100-1 000. The plasma, urine and feces samples were collected after male Beagle dogs were administered with Dangefentong Capsules. The prototype components and metabolites were identified by UHPLC-Q/Orbitrap-MS/MS analysis combined with reference substances and references. The results showed that 107 chemical components were identified, including 58 prototype components and 49 metabolites. The identified prototype components included 42 components from Salviae Miltiorrhizae Radix et Rhizoma and 16 components from Puerariae Lobatae Radix. The metabolites consist of 21 and 28 metabolites of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix, respectively. They are mainly derived from the methylation, hydroxylation, sulfation and glucuronidation of salvianolic acids, tanshinones and pueraria flavonoids. This research rapi-dly analyzes the chemical components in vivo of Beagle dogs administered with Dangefentong Capsules, laying a basis for illustrating the pharmacodynamic material basis and mechanism of Dangefentong Capsules.


Subject(s)
Drugs, Chinese Herbal , Pueraria , Abietanes , Acetonitriles , Alkenes , Animals , Capsules , Chromatography, High Pressure Liquid/methods , Dogs , Drugs, Chinese Herbal/chemistry , Flavonoids , Formates , Male , Polyphenols , Tandem Mass Spectrometry
5.
Mol Genet Genomics ; 297(6): 1481-1493, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35933483

ABSTRACT

Plant tolerance to heat or high temperature is crucial to crop production, especially in the situation of elevated temperature resulting from global climate change. Cowpea, Vigna unguiculata (L.) Walp., is an internationally important legume food crop and an excellent pool of genes for numerous traits resilient to environmental extremes, particularly heat and drought. Here, we report a single nucleotide polymorphism (SNP) genetic map for cowpea and identification of the loci controlling the heat tolerance in the species. The SNP map consists of 531 bins containing 4,154 SNPs grouped into 11 linkage groups, and collectively spans 1,084.7 cM, thus having a density of one SNP in 0.26 cM or 149 kb. The 11 linkage groups of the map were aligned to the 11 cowpea chromosomes. Quantitative trait locus (QTL) mapping identified nine QTLs responsible for the cowpea heat tolerance on seven of the 11 chromosomes, with each QTL explaining 6.5-21.8% of heat tolerance phenotypic variation. Moreover, we aligned these nine QTLs to the cowpea genome. Each of the QTLs was positioned in a genomic region ranging from 209,000 bp to 12,590,450 bp, and the QTL with the largest effect (21.8%) on heat tolerance, qHT4-1, was located within an interval of only 234,195 bp. These results provide SNP markers useful for marker-assisted selection for heat tolerance and lay a foundation for cloning, characterization, and applications of the genes controlling the cowpea heat tolerance for heat tolerance genetic improvement in cowpea and related crops.


Subject(s)
Thermotolerance , Vigna , Quantitative Trait Loci/genetics , Vigna/genetics , Polymorphism, Single Nucleotide/genetics , Thermotolerance/genetics , Genetic Linkage
6.
Plant Sci ; 324: 111424, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995113

ABSTRACT

Accurate prediction of hybrid offspring complex trait phenotype from parents is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report genome-wide identification of genes enabling accurate prediction of hybrid offspring complex traits from parents using maize grain yield as the target trait. We identified 181 ZmF1GY genes enabling prediction of maize (Zea mays L.) F1 hybrid grain yield from parents and tested their utility and efficiency for predicting F1 hybrid grain yields from parents using their expressions, genic SNPs, and number of favorable alleles (NFAs), respectively. The ZmF1GY genes predicted hybrid grain yields from parents at an accuracy of 0.86, presented by correlation coefficient between predicted and observed phenotypes, within an environment, 0.74 across environments, and 0.64 across populations, outperforming genomic prediction by 27-406%, 23%, and 40%, respectively. Furthermore, we identified nine of the ZmF1GY genes containing SNPs or InDels in parents that increased or decreased hybrid grain yields by 14-46%. When the NFAs of these nine ZmF1GY genes were used for hybrid grain yield prediction from parents, they predicted hybrid grain yields at an accuracy of 0.79, outperforming genomic prediction by 21% that was based on up to tens of thousands of genome-wide SNPs. These results demonstrate the feasibility of developing a gene toolkit for a species enabling gene-based breeding across environments and populations that is much more powerful and efficient than current breeding, thereby helping secure the world's food production. The methodology is applicable to all crops, livestock, and humans.


Subject(s)
Plant Breeding , Zea mays , Edible Grain/genetics , Genomics/methods , Humans , Multifactorial Inheritance , Phenotype , Plant Breeding/methods , Polymorphism, Single Nucleotide/genetics , Zea mays/genetics
7.
Plant Sci ; 321: 111318, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35696918

ABSTRACT

Stagnated crop improvement has raised questions of whether and how current crop cultivars can be further improved. Genes are the core determinants of performance of all cultivars. Here, we report the molecular basis of plant breeding and address these questions by analyzing 226 GFL genes controlling and accurately predicting fiber length, an important breeding objective trait, in cotton (Gossypium sp.). We first identified the favorable allele and the number of favorable alleles (NFAs) of each GFL gene, calculated the total NFAs of the 226 GFL genes accumulated in 198 advanced breeding lines, and analyzed them against fiber lengths. Fiber lengths of the breeding lines were strongly correlated with the total NFAs of the GFL genes (r = 0.85, P < 0.0001), suggesting that accumulation of the favorable alleles of the genes controlling objective traits is the molecular basis of cotton breeding. Surprisingly, a breeding line with a fiber length of present cultivars having the longest fibers contained only about 51% of the total NFAs of the 226 GFL genes. The genetic potentials of current cultivars were then predicted using linear and non-linear models, respectively, revealing that a breeding line or cultivar with a fiber length of 33.8 mm could be further improved in fiber length by up to 118%. Finally, we showed that the genetic potential of such a breeding line can be realized through gene-based breeding. Therefore, these findings shed light on continued crop improvement in general and provide 740 genic biomarkers desirable for enhanced cotton fiber breeding.


Subject(s)
Cotton Fiber , Plant Breeding , Alleles , Gossypium/genetics , Phenotype , Quantitative Trait Loci
8.
Plant Sci ; 316: 111153, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35151437

ABSTRACT

Accurate, simple, rapid, and inexpensive prediction of complex traits controlled by numerous genes is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report a novel method that enables accurate, simple, and rapid prediction of complex traits of individuals or offspring from parents based on the number of favorable alleles (NFAs) of the genes controlling the objective traits. The NFAs of 226 cotton fiber length (GFL) genes and nine maize hybrid grain yield related (ZmF1GY) genes were directly used to predict cotton fiber lengths of individual plants and maize grain yields of F1 hybrids from parents, respectively, using prediction model-based methods as controls. The NFAs of the 226 GFL genes predicted cotton fiber lengths at an accuracy of 0.85, as the model methods and outperforming genomic prediction by 82 % - 170 %. The NFAs of the nine ZmF1GY genes predicted grain yields of maize hybrids from parents at an accuracy of 0.80, outperforming genomic prediction by 67 %. Moreover, the prediction accuracies of these traits were consistent across years, environments, and eco-agricultural systems. Importantly, the accurate prediction of these traits directly using the NFAs of the genes allows breeding to be performed in greenhouse, phytotron, or off-season, without the need of the model training and validation steps essential and costly for model-based genomic or genic prediction. Therefore, this new method dramatically outperforms the current model-based genomic methods used for phenotype prediction and streamlines the process of breeding, thus promising to substantially enhance current plant and animal breeding.


Subject(s)
Multifactorial Inheritance , Zea mays , Alleles , Genome, Plant , Genotype , Models, Genetic , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Zea mays/genetics
9.
Front Oncol ; 12: 1104810, 2022.
Article in English | MEDLINE | ID: mdl-36686802

ABSTRACT

Background & Aims: Tumor-associated chronic inflammation has been determined to play a crucial role in tumor progression, angiogenesis and immunosuppression. The objective of this study was to assess the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in perihilar cholangiocarcinoma (pCCA) patients following curative resection. Methods: Consecutive pCCA patients following curative resection at 3 Chinese hospitals between 2014 and 2018 were included. The NLR was defined as the ratio of neutrophil count to lymphocyte count. PLR was defined as the ratio of platelet count to lymphocyte count. The optimal cutoff values of preoperative NLR and PLR were determined according to receiver operating characteristic (ROC) curves for the prediction of 1-year overall survival (OS), and all patients were divided into high- and low-risk groups. Kaplan-Meier curves and Cox regression models were used to investigate the relationship between values of NLR and PLR and values of OS and recurrence-free survival (RFS) in pCCA patients. The usefulness of NLR and PLR in predicting OS and RFS was evaluated by time-dependent ROC curves. Results: A total of 333 patients were included. According to the ROC curve for the prediction of 1-year OS, the optimal cutoff values of preoperative NLR and PLR were 1.68 and 113.1, respectively, and all patients were divided into high- and low-risk groups. The 5-year survival rates in the low-NLR (<1.68) and low-PLR groups (<113.1) were 30.1% and 29.4%, respectively, which were significantly higher than the rates of 14.9% and 3.3% in the high-NLR group (≥1.68) and high-PLR group (≥113.1), respectively. In multivariate analysis, high NLR and high PLR were independently associated with poor OS and RFS for pCCA patients. The time-dependent ROC curve revealed that both NLR and PLR were ideally useful in predicting OS and RFS for pCCA patients. Conclusions: This study found that both NLR and PLR could be used to effectively predict long-term survival in patients with pCCA who underwent curative resection.

10.
Sci Rep ; 11(1): 14393, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257377

ABSTRACT

Successful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.


Subject(s)
RNA-Seq , Zygote , Animals , Blastomeres , Fertilization in Vitro , Gene Expression Regulation, Developmental , Oocytes , Swine
11.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1148-1154, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787109

ABSTRACT

There is no consensus on the content, accumulation, transformation and content determination methods of phenolic acids in fresh Salvia miltiorrhiza. In order to find out the true content of phenolic acids in fresh S. miltiorrhiza, a variety of treatment me-thods were used in this study to prepare sample solution. The content changes of phenolic acids in S. miltiorrhiza samples with different dehydration rates were investigated during drying and shade drying processes. Polyphenol oxidase(PPO) of S. miltiorrhiza was extracted and purified by ammonium sulfate precipitation and dialysis to investigate the enzymatic properties. The content of rosmarinic acid, lithosperic acid and S. nolic acid B in S. miltiorrhiza was determined by UPLC. The results showed that the content of phenolic acids in fresh S. miltiorrhiza was highest when it was homogenized with 1 mol·L~(-1) HCl solution or 1 mol·L~(-1) HCl methanol solution. There was no significant difference in the content of phenolic acids in S. miltiorrhiza with different dehydration rates, indicating that there was no correlation between phenolic acid content and dehydration rate. The optimum pH of S. miltiorrhiza PPO was 7.6 and the optimum temperature was 40 ℃. With catechol as substrate, S. miltiorrhiza PPO had the enzymatic browning reaction which was in compliance with Michaelis equation, with Michaelis constant K_m of 0.12 mol·L~(-1) and V_(max) of 588.23 U·min~(-1). The inhibitory effect of citric acid, disodium ethylenediamine tetraacetate, ascorbic acid and sodium sulfite on S. miltiorrhiza PPO increased with the increase of inhibitor concentration, and sodium sulfite showed the strongest inhibitory effect. The present study proved that there were a large number of phenolic acids in fresh S. miltiorrhiza, which were the secondary metabolite of primitive accumulation during the growth of S. miltiorrhiza, rather than the induced product of postharvest drying and dehydration stress. This study has reference value and significance for the cultivation, harvest and processing of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Catechol Oxidase , Desiccation , Hydroxybenzoates , Plant Roots
12.
Reprod Domest Anim ; 56(4): 642-657, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33496347

ABSTRACT

The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.


Subject(s)
In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/physiology , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Animals , Female , Gene Expression Regulation, Developmental , Meiosis , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA-Seq/veterinary , Signal Transduction , Swine
13.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6530-6541, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34994146

ABSTRACT

To reveal the rationality of compatibility of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) and Puerariae Lobatae Radix(PLR) from the perspective of pharmacokinetics, this study established a UPLC-MS/MS method for quantitative determination of PLR flavonoids(3'-hydroxy puerarin, puerarin, puerarin 6″-O-xyloside, 3'-methoxy puerarin, puerarin apioside) and salvianolic acids and tanshinones(salvianolic acid B, cryptotanshinone, and tanshinone Ⅱ_A) in plasma of rats. Rats were given SMRR extract, PLR extract, and SMRR-PLR extract by gavage and then plasma was collected at different time. UPLC separation was performed under the following conditions: Eclipse C_(18) column(2.1 mm×50 mm, 1.8 µm), 0.1% formic acid in water(A)-0.1% formic acid in acetonitrile(B) as mobile phase for gradient elution. Conditions for MS are as below: multiple reaction monitoring(MRM), ESI~(+/-). Comprehensive validation of the UPLC-MS/MS method(specifically, from the aspects of calibration curve, precision, accuracy, repeatability, stability, matrix effect, extract recovery) was performed and the result demonstrated that it complied with quantitative analysis requirements for biological samples. Compared with SMRR extract alone or PLR extract alone, SMRR-PLR extract significantly increased the AUC and C_(max) of PLR flavonoids and tanshinones in rat plasma, suggesting that the combination of SMRR and PLR promoted the absorption of the above components. The underlying mechanism needs to be further studied.


Subject(s)
Drugs, Chinese Herbal , Pueraria , Salvia miltiorrhiza , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacokinetics , Plant Roots/chemistry , Pueraria/chemistry , Rats , Rhizome/chemistry , Salvia miltiorrhiza/chemistry , Tandem Mass Spectrometry
14.
Front Plant Sci ; 11: 583277, 2020.
Article in English | MEDLINE | ID: mdl-33281846

ABSTRACT

Accurate phenotype prediction of quantitative traits is paramount to enhanced plant research and breeding. Here, we report the accurate prediction of cotton fiber length, a typical quantitative trait, using 474 cotton (Gossypium ssp.) fiber length (GFL) genes and nine prediction models. When the SNPs/InDels contained in 226 of the GFL genes or the expressions of all 474 GFL genes was used for fiber length prediction, a prediction accuracy of r = 0.83 was obtained, approaching the maximally possible prediction accuracy of a quantitative trait. This has improved by 116%, the prediction accuracies of the fiber length thus far achieved for genomic selection using genome-wide random DNA markers. Moreover, analysis of the GFL genes identified 125 of the GFL genes that are key to accurate prediction of fiber length, with which a prediction accuracy similar to that of all 474 GFL genes was obtained. The fiber lengths of the plants predicted with expressions of the 125 key GFL genes were significantly correlated with those predicted with the SNPs/InDels of the above 226 SNP/InDel-containing GFL genes (r = 0.892, P = 0.000). The prediction accuracies of fiber length using both genic datasets were highly consistent across environments or generations. Finally, we found that a training population consisting of 100-120 plants was sufficient to train a model for accurate prediction of a quantitative trait using the genes controlling the trait. Therefore, the genes controlling a quantitative trait are capable of accurately predicting its phenotype, thereby dramatically improving the ability, accuracy, and efficiency of phenotype prediction and promoting gene-based breeding in cotton and other species.

15.
Sci Rep ; 10(1): 10074, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572040

ABSTRACT

Most traits of agricultural importance are quantitative traits controlled by numerous genes. However, it remains unclear about the molecular mechanisms underpinning quantitative traits. Here, we report the molecular characteristics of the genes controlling three quantitative traits randomly selected from three diverse plant species, including ginsenoside biosynthesis in ginseng (Panax ginseng C.A. Meyer), fiber length in cotton (Gossypium hirsutum L. and G. barbadense L.) and grain yield in maize (Zea mays L.). We found that a vast majority of the genes controlling a quantitative trait were significantly more likely spliced into multiple transcripts while they expressed. Nevertheless, only one to four, but not all, of the transcripts spliced from each of the genes were significantly correlated with the phenotype of the trait. The genes controlling a quantitative trait were multiple times more likely to form a co-expression network than other genes expressed in an organ. The network varied substantially among genotypes of a species and was associated with their phenotypes. These findings indicate that the genes controlling a quantitative trait are more likely pleiotropic and functionally correlated, thus providing new insights into the molecular basis underpinning quantitative traits and knowledge necessary to develop technologies for efficient manipulation of quantitative traits.


Subject(s)
Gene Regulatory Networks , Gossypium/genetics , Panax/genetics , Zea mays/genetics , Alternative Splicing , Chromosome Mapping , Cotton Fiber/analysis , Edible Grain/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Ginsenosides/biosynthesis , Gossypium/growth & development , Gossypium/metabolism , Panax/growth & development , Panax/metabolism , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Zea mays/growth & development , Zea mays/metabolism
16.
Mol Genet Genomics ; 295(5): 1187-1195, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32476049

ABSTRACT

Cowpea (Vigna unguiculate (L.) Walp.) is a worldwide important multifunctional legume crop for food grain, vegetable, fodder, and cover crop. Nevertheless, only limited research has been conducted on agronomic traits. Here, we report quantitative trait locus (QTL) analysis of the days to flowering (DTF) and plant height (PH) using a dense SNP linkage map recently developed from a recombinant inbred line (RIL) population derived from a cross between Golden Eye Cream and IT98K-476-8. The population was phenotyped for DTF and PH through field and greenhouse trials under two environments. The QTLs controlling these traits were mapped using multiple-environment combined and individual trial phenotypic data. The combined data analysis identified one major QTL (qDTF9.1) for DTF, and one major QTL (qPH9.1) and a minor QTL (qPH4.1) for PH. qDTF9.1 and qPH9.1 were adjacent to each other on Chromosome 9 and each explained 29.3% and 29.5% of the phenotypic variation (PVE), respectively. The individual trial data analysis identified a minor QTL (qDTF2.1) on Chromosome 2 for DTF and two minor QTLs (qPH4.1 and qPH4.2) on Chromosome 4 for PH, while the major QTLs, qDTF9.1 and qPH9.1, were consistently identified in all trials conducted. Epistasis analysis revealed that qDTF9.1 interacted with one locus on Chromosome 4, contributed 50% of the PVE, and qPH9.1 interacted with one locus on each of Chromosomes 4 and 6, contributing 30% and 23% of the PVE, respectively, suggesting that epistasis plays an important role in the trait performance. These results, therefore, provide a deeper understanding of the genetic architecture of plant DTF and PH, and molecular tools necessary for cloning the genes and for enhanced cowpea breeding.


Subject(s)
Chromosome Mapping/methods , Quantitative Trait Loci , Vigna/physiology , Chromosomes, Plant/genetics , Crosses, Genetic , Epistasis, Genetic , Flowers/genetics , Flowers/growth & development , Phenotype , Polymorphism, Single Nucleotide , Vigna/anatomy & histology , Vigna/genetics
17.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1090-1096, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32237451

ABSTRACT

There were significant differences in phenolic acid content between fresh and dried Salvia miltiorrhiza before and after drying. That is to say, the content of phenolic acid in S. miltiorrhiza significantly increased with the increase of dehydration during the drying process.In order to investigate the differences and transformation of free and bound phenolic acids before and after the drying process of S.miltiorrhiza, we studied hydrolysis method, hydrolysates and hydrolysis regularity of phenolic acids in S.miltiorrhiza. UPLC method was used to determine four main hydrolysates of bound phenolic acids, namely danshensu, caffeic acid dimer(SMND-309), caffeic acid, przewalskinic acid A(prolithosperic acid), and three main free phenolic acids in S.miltiorrhiza, namely rosmarinic acid, lithospermic acid, salvianolic acid B. The results of the acid-base hydrolysis experiment of salvianolic acid showed that the alkaline hydrolysis effect was significantly better than acid hydrolysis. The optimal alkaline hydrolysis condition was hydrolysis at 70 ℃ for 4 h with 2 mol·L~(-1) NaOH solution containing 1% ascorbic acid(Vit C). The hydrolysates of free phenolic acids were the same with the hydrolysates of bound phenolic acids. Fresh S.miltiorrhiza contains a low level of free phenolic acids and a high level of bound phenolic acids, which were exactly opposite to dried S.miltiorrhiza. It was suggested that a large amount of bound phenolic acids was accumulated during the growth of S.miltiorrhiza. These bound phenolic acids were coupled with polysaccharides on the cytoderm through ester bonds to form insoluble phenolic acids, which was not easy to be detected by conventional methods. However, during drying and dehydration processes, the bound phenolic acids were converted to a large amount of free phenolic acids under the action of the relevant enzyme.


Subject(s)
Desiccation , Hydroxybenzoates/analysis , Salvia miltiorrhiza/chemistry
18.
Genomics ; 112(1): 225-236, 2020 01.
Article in English | MEDLINE | ID: mdl-30826444

ABSTRACT

Accurately predicting the phenotypes of complex traits is crucial to enhanced breeding in plants and livestock, and to enhanced medicine in humans. Here we reports the first study accurately predicting complex traits using their contributing genes, especially their number of favorable alleles (NFAs), genotypes and transcript expressions, with the grain yield of maize, Zea mays L. When the NFAs or genotypes of only 27 SNP/InDel-containing grain yield genes were used, a prediction accuracy of r = 0.52 or 0.49 was obtained. When the expressions of grain yield gene transcripts were used, a plateaued prediction accuracy of r = 0.84 was achieved. When the phenotypes predicted with two or three of the genic datasets were used for progeny selection, the selected lines were completely consistent with those selected by phenotypic selection. Therefore, the genes controlling complex traits enable accurately predicting their phenotypes, thus desirable for gene-based breeding in crop plants.


Subject(s)
Edible Grain/genetics , Genes, Plant , Plant Breeding/methods , Zea mays/genetics , Alleles , Gene Expression , Genotype , Multifactorial Inheritance , Phenotype
19.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4634-4640, 2019 Nov.
Article in Chinese | MEDLINE | ID: mdl-31872658

ABSTRACT

There is no consensus on the drying methods of Salvia miltiorrhiza in ancient and modern times,especially on the content of phenolic acid in fresh S. miltiorrhiza. In order to further explore the content of main components in fresh S. miltiorrhiza and study the dynamic changes during the drying process,the content of main components was used as the index in this study to evaluate the processing method,drying method,correlation between dehydration rate and component content for fresh S. miltiorrhiza. In addition,the sealed and unsealed parallel control groups were set to carry out verification test during the drying process. UPLC method was used for determination of seven main components including rosmarinic acid,lithosperic acid,salvianolic acid B,cryptotanshinone,tanshinoneⅠ,methylene salianolate and tanshinone ⅡAin S. miltiorrhiza. The results showed that the fresh S. miltiorrhiza contained low levels of phenolic acid,and the content of phenolic acid increased significantly with the increase of dehydration rate during drying process,while the change of tanshinone was not obvious. In the comparison of three drying methods,we found that drying at 50 ℃ was better than drying in the sun,and drying in the sun was superior to drying in the shade. So,drying at 50 ℃ was the best drying method. The correlation between dehydration and phenolic acid content of S. miltiorrhiza was analyzed by verification test and SPSS software,which further proved that the dehydration rate was significantly positively correlated with the content of phenolic acid components. This study provides reference for the production processing and drying methods of S. miltiorrhiza medicinal materials,which is of great significance for improving the quality of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Abietanes , Desiccation , Plant Roots
20.
Theriogenology ; 140: 44-51, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31437668

ABSTRACT

Lysosome, an important organelle in eukaryotes, can sequester macromolecules submitted by the endocytosis and autophagy pathways for degradation and recycling. Massive macromolecular turnover is also vital to the growth and development of mammalian oocytes. However, the functional role of lysosomes in the meiotic maturation of mammalian oocytes remains largely unexplored. Here, by treating in vitro matured porcine cumulus-oocyte complexes (COCs) with chloroquine (CQ), a lysosome inhibitor, we showed that regardless of CQ concentration, lysosomal inhibition affected neither the extrusion of the first polar body (PB1), nor the ROS levels. However, CQ treatment dramatically decreased the rates of oocytes with normal chromosome alignment and cytoskeleton organization (P < 0.05), but boosted the rates of oocytes with apoptosis (P < 0.05). Subsequently, after pathenogenetic activation or in vitro fertilization, the death or fragmentation rates of oocytes treated by CQ (both 35 µM and 45 µM) were significantly higher (P < 0.05), whereas the rates of embryo cleavage, embryos developed to blastocysts, and average blastomere number per blastocyst, were all significantly lower (P < 0.05), respectively. Furthermore, CQ (35 µM) treatment activated the autophagy pathway by elevating the LC3 II/I ratio. Taken together, lysosomes could affect porcine oocyte maturation and subsequent developmental capacity partially through the chromosome organization/cytoskeleton assembly and autophagy/apoptosis pathways.


Subject(s)
Lysosomes/physiology , Oocytes/growth & development , Swine/embryology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Chloroquine/pharmacology , Chromosomes/metabolism , Chromosomes/ultrastructure , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , In Vitro Oocyte Maturation Techniques/methods , In Vitro Oocyte Maturation Techniques/veterinary , Lysosomes/drug effects , Meiosis/drug effects , Oocytes/cytology , Oocytes/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...