Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Psychol Med ; : 1-9, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445386

ABSTRACT

BACKGROUND: Over the past several decades, more research focuses have been made on the inflammation/immune hypothesis of schizophrenia. Building upon synaptic plasticity hypothesis, inflammation may contribute the underlying pathophysiology of schizophrenia. Yet, pinpointing the specific inflammatory agents responsible for schizophrenia remains a complex challenge, mainly due to medication and metabolic status. Multiple lines of evidence point to a wide-spread genetic association across genome underlying the phenotypic variations of schizophrenia. METHOD: We collected the latest genome-wide association analysis (GWAS) summary data of schizophrenia, cytokines, and longitudinal change of brain. We utilized the omnigenic model which takes into account all genomic SNPs included in the GWAS of trait, instead of traditional Mendelian randomization (MR) methods. We conducted two round MR to investigate the inflammatory triggers of schizophrenia and the resulting longitudinal changes in the brain. RESULTS: We identified seven inflammation markers linked to schizophrenia onset, which all passed the Bonferroni correction for multiple comparisons (bNGF, GROA(CXCL1), IL-8, M-CSF, MCP-3 (CCL7), TNF-ß, CRP). Moreover, CRP were found to significantly influence the linear rate of brain morphology changes, predominantly in the white matter of the cerebrum and cerebellum. CONCLUSION: With an omnigenic approach, our study sheds light on the immune pathology of schizophrenia. Although these findings need confirmation from future studies employing different methodologies, our work provides substantial evidence that pervasive, low-level neuroinflammation may play a pivotal role in schizophrenia, potentially leading to notable longitudinal changes in brain morphology.

2.
BMC Vet Res ; 20(1): 106, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493286

ABSTRACT

BACKGROUND: Feline herpesvirus type 1 (FHV) and Feline calicivirus (FCV) are the primary co-infecting pathogens that cause upper respiratory tract disease in cats. However, there are currently no visual detection assays available for on-site testing. Here, we develop an ultrasensitive and visual detection method based on dual recombinase polymerase amplification (dRPA) reaction and the hybrid Cas12a/Cas13a trans-cleavage activities in a one-tube reaction system, referred to as one-tube dRPA-Cas12a/Cas13a assay. RESULTS: The recombinant plasmid DNAs, crRNAs, and RPA oligonucleotides targeting the FCV ORF1 gene and FHV-1 TK gene were meticulously prepared. Subsequently, dual RPA reactions were performed followed by screening of essential reaction components for hybrid CRISPR-Cas12a (targeting the FHV-1 TK gene) and CRISPR-Cas13a (targeting the FCV ORF1 gene) trans-cleavage reaction. As a result, we successfully established an ultra-sensitive and visually detectable method for simultaneous detection of FCV and FHV-1 nucleic acids using dRPA and CRISPR/Cas-powered technology in one-tube reaction system. Visual readouts were displayed using either a fluorescence detector (Fluor-based assay) or lateral flow dipsticks (LDF-based assay). As expected, this optimized assay exhibited high specificity towards only FHV-1 and FCV without cross-reactivity with other feline pathogens while achieving accurate detection for both targets with limit of detection at 2.4 × 10- 1 copies/µL for the FHV-1 TK gene and 5.5 copies/µL for the FCV ORF1 gene, respectively. Furthermore, field detection was conducted using the dRPA-Cas12a/Cas13a assay and the reference real-time PCR methods for 56 clinical samples collected from cats with URTD. Comparatively, the results of Fluor-based assay were in exceptional concordance with the reference real-time PCR methods, resulting in high sensitivity (100% for both FHV-1 and FCV), specificity (100% for both FHV-1 and FCV), as well as consistency (Kappa values were 1.00 for FHV-1 and FCV). However, several discordant results for FHV-1 detection were observed by LDF-based assay, which suggests its prudent use and interpretaion for clinical detection. In spite of this, incorporating dRPA-Cas12a/Cas13a assay and visual readouts will facilitate rapid and accurate detection of FHV-1 and FCV in resource-limited settings. CONCLUSIONS: The one-tube dRPA-Cas12a/Cas13a assay enables simultaneously ultrasensitive and visual detection of FHV-1 and FCV with user-friendly modality, providing unparalleled convenience for FHV-1 and FCV co-infection surveillance and decision-making of URTD management.


Subject(s)
Calicivirus, Feline , Herpesviridae , Varicellovirus , Cats , Animals , Recombinases/genetics , CRISPR-Cas Systems
3.
Inorg Chem ; 63(6): 2987-2996, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38295325

ABSTRACT

The current small-scale synthesis and relatively large size of Cu2O have limited its practical applications. Herein, we developed a hydrolysis strategy to prepare phase-pure Cu2O networks composed of small granules (ca. 25 nm) on a gram scale. The preparation involves in situ hydrolyzing the Hx[CuxCl2x] complexes prereduced in N,N'-dimethylformamide (DMF). The DMF-soluble Hx[CuxCl2x] complexes are critical for the homogeneous nucleation of CuCl seeds and subsequent hydrolysis, allowing for separate control over the nucleation and growth stages to regulate the formation of Cu2O networks. The novel Cu2O networks possess numerous exposed active sites and hierarchical porosities, conferring high catalytic activity and fast mass transfer capability. The inherent peroxidase-mimic activity of Cu2O is severely inhibited under neutral conditions but can be triggered by Cr6+, enabling the colorimetric assay of Cr6+ with the assistance of the oxidation-induced color change of 3,3',5,5'-tetramethylbenzidine. Through density functional theory calculation, we confirmed that the attachment of Cr6+ on the Cu2O surface reduced the dissociation energy of H2O2, enhancing the enzyme-mimic activity. The colorimetric detection method demonstrated a sensitive and specific assay capability for Cr6+ (LOD = 0.095 µM). Our work offers a straightforward protocol for novel design of metal or metal-based nanomaterials for nanozymes or other applications.

5.
Sci Total Environ ; 912: 169163, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38072279

ABSTRACT

Hardpan-based profiles naturally formed under semi-arid climatic conditions have substantial potential in rehabilitating sulfidic tailings, resulting from their aggregation microstructure regulated by Fe-Si cements. Nevertheless, eco-engineered approaches for accelerating the formation of complex cementation structure remain unclear. The present study aims to investigate the microbial functions of extremophiles on mineral dissolution, oxidation, and aggregation (cementation) through a microcosm experiment containing pyrites and polysilicates, of which are dominant components in typical sulfidic tailings. Microspectroscopic analysis revealed that pyrite was rapidly dissolved and massive microbial corrosion pits were displayed on pyrite surfaces. Synchrotron-based X-ray absorption spectroscopy demonstrated that approximately 30 % pyrites were oxidized to jarosite-like (ca. 14 %) and ferrihydrite-like minerals (ca. 16 %) in talc group, leading to the formation of secondary Fe precipitates. The Si ions co-dissolved from polysilicates may be embedded into secondary Fe precipitates, while these clustered Fe-Si precipitates displayed distinct morphology (e.g., "circular" shaped in the talc group, "fine-grained" shaped in the chlorite group, and "donut" shaped in the muscovite group). Moreover, the precipitates could join together and act as cementing agents aggregating mineral particles together, forming macroaggregates in talc and chlorite groups. The present findings revealed critical microbial functions on accelerating mineral dissolution, oxidation, and aggregation of pyrite and various silicates, which provided the eco-engineered feasibility of hardpan-based technology for mine site rehabilitation.


Subject(s)
Acidithiobacillus , Chlorides , Iron , Silicon Dioxide , Sulfides , Talc , Minerals/chemistry , Electrolytes , Iron, Dietary
6.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091466

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Subject(s)
Ferric Compounds , Mycorrhizae , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Fourier Analysis , Minerals/chemistry , Soil/chemistry , Iron
7.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38085882

ABSTRACT

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Subject(s)
Iron Compounds , Minerals , Bacteria , Sulfur , Oxidation-Reduction , Iron , Soil , Hydrogen-Ion Concentration
8.
iScience ; 26(11): 108312, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026190

ABSTRACT

Ten-eleven translocation proteins (TETs) are dioxygenases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an important epigenetic mark that regulates gene expression during development and differentiation. Here, we found that the TET2 expression was positively associated with adipogenesis. Further, in vitro and in vivo experiments showed that TET2 deficiency blocked adipogenesis by inhibiting the expression of the key transcription factors CCAAT/enhancer-binding protein beta (C/EBPß), C/EBPα and peroxisome proliferator-activated receptor gamma (PPARγ). In addition, TET2 promoted 5hmC on the CpG islands (CGIs) of Cebpb, Cebpa and Pparg at the initial time point of their transcription, which requires the cAMP-responsive element-binding protein (CREB). At last, specific knockout of Tet2 in preadipocytes enabled mice to resist obesity and attenuated the obesity-associated insulin resistance. Together, TET2 is recruited by CREB to promote the expression of Cebpb, Cebpa and Pparg via 5hmC during adipogenesis and may be a potential therapeutic target for obesity and insulin resistance.

9.
Brain Behav Immun ; 113: 389-400, 2023 10.
Article in English | MEDLINE | ID: mdl-37557965

ABSTRACT

BACKGROUND: The correlation between human gut microbiota and psychiatric diseases has long been recognized. Based on the heritability of the microbiome, genome-wide association studies on human genome and gut microbiome (mbGWAS) have revealed important host-microbiome interactions. However, establishing causal relationships between specific gut microbiome features and psychological conditions remains challenging due to insufficient sample sizes of previous studies of mbGWAS. METHODS: Cross-cohort meta-analysis (via METAL) and multi-trait analysis (via MTAG) were used to enhance the statistical power of mbGWAS for identifying genetic variants and genes. Using two large mbGWAS studies (7,738 and 5,959 participants respectively) and12 disease-specific studies from the Psychiatric Genomics Consortium (PGC), we performed bidirectional two-sample mendelian randomization (MR) analyses between microbial features and psychiatric diseases (up to 500,199 individuals). Additionally, we conducted downstream gene- and gene-set-based analyses to investigate the shared biology linking gut microbiota and psychiatric diseases. RESULTS: METAL and MTAG conducted in mbGWAS could boost power for gene prioritization and MR analysis. Increases in the number of lead SNPs and mapped genes were witnessed in 13/15 species and 5/10 genera after using METAL, and MTAG analysis gained an increase in sample size equivalent to expanding the original samples from 7% to 63%. Following METAL use, we identified a positive association between Bacteroides faecis and ADHD (OR, 1.09; 95 %CI, 1.02-1.16; P = 0.008). Bacteroides eggerthii and Bacteroides thetaiotaomicron were observed to be positively associated with PTSD (OR, 1.11; 95 %CI, 1.03-1.20; P = 0.007; OR, 1.11; 95 %CI, 1.01-1.23; P = 0.03). These findings remained stable across statistical models and sensitivity analyses. No genetic liabilities to psychiatric diseases may alter the abundance of gut microorganisms.Using biological annotation, we identified that those genes contributing to microbiomes (e.g., GRIN2A and RBFOX1) are expressed and enriched in human brain tissues. CONCLUSIONS: Our statistical genetics strategy helps to enhance the power of mbGWAS, and our genetic findings offer new insights into biological pleiotropy and causal relationship between microbiota and psychiatric diseases.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Mental Disorders/genetics
10.
iScience ; 26(7): 107102, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485366

ABSTRACT

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

11.
Genomics Proteomics Bioinformatics ; 21(2): 349-358, 2023 04.
Article in English | MEDLINE | ID: mdl-37075830

ABSTRACT

As one of the state-of-the-art automated function prediction (AFP) methods, NetGO 2.0 integrates multi-source information to improve the performance. However, it mainly utilizes the proteins with experimentally supported functional annotations without leveraging valuable information from a vast number of unannotated proteins. Recently, protein language models have been proposed to learn informative representations [e.g., Evolutionary Scale Modeling (ESM)-1b embedding] from protein sequences based on self-supervision. Here, we represented each protein by ESM-1b and used logistic regression (LR) to train a new model, LR-ESM, for AFP. The experimental results showed that LR-ESM achieved comparable performance with the best-performing component of NetGO 2.0. Therefore, by incorporating LR-ESM into NetGO 2.0, we developed NetGO 3.0 to improve the performance of AFP extensively. NetGO 3.0 is freely accessible at https://dmiip.sjtu.edu.cn/ng3.0.


Subject(s)
alpha-Fetoproteins , Amino Acid Sequence
12.
Small ; 19(22): e2207822, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36866509

ABSTRACT

Uniformly depositing a thin layer of functional constituents on porous foam is attractive to realize their concentrated interfacial application. Here, a simple but robust polyvinyl alcohol (PVA)-mediated evaporation drying strategy to achieve uniform surface deposition on melamine foam (MF) is introduced. Solutes can be accumulated homogeneously to the surface periphery of MF due to the enhanced coffee-ring effect of PVA and its stabilizing effect on various functional constituents, including molecules and colloidal particles. The deposition thickness is positively correlated with the feeding amounts of PVA but seems to be independent of drying temperature. 3D outward capillary flow driven by the combination of contact surface pinning and continual interfacial evaporation induces the forming of core-shell foams. The enhanced interfacial photothermal effect and solar desalination performance using PVA/polypyrrole-coated MF as a Janus solar evaporator are demonstrated.

13.
J Affect Disord ; 331: 200-206, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36907458

ABSTRACT

BACKGROUND: To determine the association between self-rated health (SRH) and subsequent all-cause hospitalizations in patients with bipolar disorder (BD) or major depression (MDD). METHODS: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. RESULTS: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02 % were female, and 3029 (10.11 %), 15,972 (53.30 %), 8313 (27.74 %), and 2652 (8.85 %) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19 % had a hospitalization event within 2 years compared with 22.65 % for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95 % CI 1.21-1.42), 1.82 (95 % CI 1.68-1.98), and 2.45 (95 % CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. LIMITATIONS: Selection bias can exist as our cohort cannot fully represent all the BD and MDD cases in the UK. Moreover, the causality is questionable. CONCLUSION: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study underscores the need for proactive SRH screening in this population, which might inform resource allocation in clinical care and enhance high-risk population detection.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Female , Middle Aged , Male , Depressive Disorder, Major/epidemiology , Bipolar Disorder/epidemiology , Prospective Studies , Biological Specimen Banks , United Kingdom/epidemiology , Health Status
14.
iScience ; 26(4): 106289, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968079

ABSTRACT

Preadipocyte determination expanding the pool of preadipocytes is a vital process in adipocyte hyperplasia, but the molecular mechanisms underlying this process are yet to be elucidated. Herein, SRY-related HMG box transcription factor 4 (SOX4) was identified as a critical target in response to BMP4- and TGFß-regulated preadipocyte determination. SOX4 deficiency is sufficient to promote preadipocyte determination in mesenchymal stem cells (MSCs) and acquisition of preadipocyte properties in nonadipogenic lineages, while its overexpression impairs the adipogenic capacity of preadipocytes and converts them into nonadipogenic lineages. Mechanism studies indicated that SOX4 activates and cooperates with LEF1 to retain the nuclear localization of ß-catenin, thus mediating the crosstalk between TGFß/BMP4 signaling pathway and Wnt signaling pathway to regulate the preadipocyte determination. In vivo studies demonstrated that SOX4 promotes the adipogenic-nonadipogenic conversion and suppresses the adipocyte hyperplasia. Together, our findings highlight the importance of SOX4 in regulating the adipocyte hyperplasia in obesity.

15.
Psychiatry Res ; 323: 115111, 2023 05.
Article in English | MEDLINE | ID: mdl-36924585

ABSTRACT

OBJECTIVE: This study aimed to investigate the relationship between childhood trauma (ChT) and white matter (WM) deficits in first-episode schizophrenia (FES). METHODS: A total of 103 individuals with FES and 206 healthy control individuals (HCs) were enrolled and assessed based on ChT Questionnaire (CTQ) and Positive and Negative Symptoms Scale (PANSS). Diffusion tensor imaging was acquired on a Signa 3.0 T scanner. Map of fractional anisotropy (FA) was analyzed using Tract-Based Spatial Statistics. Hierarchical logistic regression analyses were used to examine associations of sociodemographic characteristics, total CTQ scores, and WM deficits. RESULTS: Compared with the HCs group, the FES group showed significantly lower FA in several WM bundles (left anterior thalamic radiation, left inferior frontal-occipital fasciculus, left cingulum, forceps major, and forceps minor), and the mean FA value in these WM bundles was inversely related to the total CTQ score. In addition, a higher CTQ score may increase the risk of schizophrenia, while higher FA values may decrease the risk of schizophrenia. CONCLUSION: This study demonstrates that individuals with FES evince widespread cerebral WM abnormalities and that these abnormalities were associated with ChT. These results provide clues about the neural basis and potential biomarkers of schizophrenia.


Subject(s)
Adverse Childhood Experiences , Schizophrenia , White Matter , Humans , White Matter/diagnostic imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Diffusion Tensor Imaging , Corpus Callosum , Anisotropy , Brain
16.
Environ Pollut ; 322: 121200, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736815

ABSTRACT

The alteration of agricultural wastes into novel adsorbents can stimulate their scalability in realistic application, showing great economic and environmental advantages. Here, we proposed a strategy to engineer rice husk (RH) with microporous melamine-formaldehyde networks (MFNs) resins and the utilization for dynamic removal of organic micropollutants rapidly and efficiently. was pre-treated to acquire attractive surface and unique hierarchical porosity, endowing with surface functionalization and essential filtering properties. MFNs can be uniformly generated in-situ on the fully exposed cellulose backbones of the pre-treated RH. MFNs granules functionalized RH (RH@MFNs) exhibited high removal efficiencies over 90% within 30 min for the adsorption of hazardous organic compounds (e.g., phenolic and antibiotic micropollutants) in static tests. Experiment results and density functional theory (DFT) simulation revealed that the synergy of hydrogen bonding, π-πinteraction, and micropore preservation dominates the adsorption. Further dynamic adsorption experiments showed that the removal efficiency and equilibrium removal capacity towards bisphenol A by RH@MFNs packed bed up-flow column were 2.6 and 67 times higher than that of raw RH, respectively. The column adsorption fits well with the Thomas model and bed depth service time (BDST) kinetic model. The inherent macropores inside RH and the roughness caused by the spiky structures and mesopores outside RH, as well as the accumulated MFNs granules, can lead to local turbulence of water flow around RH@MFNs, enabling fast and efficient adsorption. This sustainable and cost-effective preparation of RH-based adsorbents sheds light on the rational design of biomass waste adsorbents for realistic wastewater.


Subject(s)
Oryza , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Oryza/chemistry , Wastewater , Polymers , Formaldehyde , Adsorption , Water Pollutants, Chemical/chemistry
17.
Sci Total Environ ; 856(Pt 1): 159078, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179848

ABSTRACT

The acidophilic sulfur oxidizing bacterium (SOB), Acidithiobacillus ferrooxidans, has been found to stimulate elemental sulfur (S0) oxidation and mineral weathering in alkaline Fe ore tailings. However, A. ferrooxidans growth and activities depend on the pH conditions surrounding their interfaces with minerals. The present study aimed to investigate how pH influences bacterial growth and functions in Fe ore tailings. A simulated aquatic 'homogeneous' incubation system was initially adjusted into acidic (pH 4), neutral (pH 7) and alkaline (pH 9) conditions, which mimicked the microenvironmental conditions of the water-cell-mineral interfaces in the tailings. It was found that A. ferrooxidans grew well and oxidised S0 under the prevailing and initially acidic conditions (pH < 6). These stimulated the weathering of biotite and amphibole-like minerals and the formation of nanosized jarosite and ferrihydrite-like minerals mediated by extracellular polymer substrate (EPS). In contrast, the initially neutral/alkaline pH conditions (i.e., pH > 7) with the presence of the alkaline tailings restricted SOB growth and functions in S0-oxidation and mineral weathering. These findings suggest that it is essential to prime acidic conditions in microenvironments to support SOB growth, activities, and functions toward mineral weathering in tailings, providing critical basis for involving SOB in eco-engineered pedogenesis in tailings.


Subject(s)
Minerals , Sulfur , Bacteria , Oxidation-Reduction , Iron , Hydrogen-Ion Concentration
18.
Theranostics ; 12(18): 7699-7716, 2022.
Article in English | MEDLINE | ID: mdl-36451857

ABSTRACT

Brown and beige fat protect against cold environments and obesity by catabolizing stored energy to generate heat. This process is achieved by controlling thermogenesis-related gene expression and the development of brown/beige fat through the induction of transcription factors, most notably PPARγ. However, the cofactors that induce the expression of thermogenic genes with PPARγ are still not well understood. In this study, we explored the role of SOX4 in adaptive thermogenesis and its relationship with PPARγ. Methods: Whole transcriptome deep sequencing (RNA-seq) analysis of inguinal subcutaneous white adipose tissue (iWAT) after cold stimulation was performed to identify genes with differential expression in mice. Indirect calorimetry detected oxygen consumption rate and heat generation. mRNA levels were analyzed by qPCR assays. Proteins were detected by immunoblotting and immunofluorescence. Interaction of proteins was detected by endogenous and exogenous Co-IP. ChIP-qPCR, FAIRE assay and luciferase reporter assays were used to investigate transcriptional regulation. Results: SOX4 was identified as the main transcriptional effector of thermogenesis. Mice with either adipocyte-specific or UCP1+ cells deletion of SOX4 exhibited significant cold intolerance, decreased energy expenditure, and beige adipocyte formation, which was attributed to decreased thermogenic gene expression. In addition, these mice developed obesity on a high-fat diet, with severe hepatic steatosis, insulin resistance, and inflammation. At the cell level, loss of SOX4 from preadipocytes inhibited the development of beige adipocytes, and loss of SOX4 from mature beige adipocytes reduced the expression of thermogenesis-related genes and energy metabolism. Mechanistically, SOX4 stimulated the transcriptional activity of Ucp1 by binding to PPARγ and activating its transcriptional function. These actions of SOX4 were, at least partly, mediated by recruiting PRDM16 to PPARγ, thus forming a transcriptional complex to elevate the expression of thermogenic genes. Conclusion: SOX4, as a coactivator of PPARγ, drives the thermogenic gene expression program and thermogenesis of beige fat, promoting energy expenditure. It has important physiological significance in resisting cold and obesity.


Subject(s)
Adipocytes, Beige , Animals , Mice , DNA-Binding Proteins , Obesity , PPAR gamma/genetics , Thermogenesis/genetics , Transcription Factors/genetics
19.
BMC Plant Biol ; 22(1): 517, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335304

ABSTRACT

BACKGROUND: Chrysanthemum arcticum, arctic daisy and its two subspecies (Chrysanthemum arcticum subsp. arcticum, Chrysanthemum arcticum subsp. polaré) are the only chrysanthemum species native to North America. A study on species' variation in morphological and diagnostic traits is important to link morphological traits with previously described single nucleotide polymorphism (SNP) markers, particularly when the genomes are sequenced. The purpose of this study was to establish phenotypic differences and soil conditions among wild C. arcticum and C. a. subsp. arcticum populations, when grown in a uniform environment for two years, for potential linkages with our SNP library. Sixteen quantitative morphological traits and five qualitative morphological traits were investigated for 255 individuals from nine C. arcticum populations and 326 individuals from 21 C. a. subsp. arcticum populations. RESULTS: In long-day controlled environment, C. arcticum flowering rate was 0% in Year 1, increased to 2.7% in Year 2, while C. a. subsp. arcticum flowering rate was 98.5% in Year 2. Two distinct clusters, distributed by taxonomic classification, were detected by Principal component analysis (PCoA) for 551 individuals from C. arcticum and C. a. subsp. arcticum. Pearson's correlation coefficient analysis indicated a positive and significant correlation between plant height, flower fresh and dry weights. Flower fresh weights were correlated with Δflower weight, while inflorescence length had showed a negative correlation with leaf number. Soil samples had high Na levels along with heavy metals. Thus, the species are salt-tolerant. CONCLUSION: A high level of salt tolerance (Na) is tolerated by these maritime species which is a unique trait in Chrysanthemum. A new diagnostic trait of inflorescence length was discovered to distinguish among C. arcticum and C. a. subsp. arcticum. Significant flowering differences occurred among the species C. arcticum and C. a. subsp. arcticum under same photoperiodic environment, including flowering rates and visible bud date. This study on the species' variation in morphological and diagnostic traits is of importance to link morphological traits with single nucleotide polymorphism (SNP) markers.


Subject(s)
Asteraceae , Chrysanthemum , Chrysanthemum/genetics , Inflorescence , Flowers/genetics , Phenotype , Soil
20.
Front Immunol ; 13: 1049812, 2022.
Article in English | MEDLINE | ID: mdl-36389727

ABSTRACT

Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Humans , Bile , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/pathology , Biomarkers , Bile Ducts, Intrahepatic/pathology , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...