Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(3): 839-850, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38108230

ABSTRACT

The conjugation of DNA molecules with metal or metal-containing nanoparticles (M/MC NPs) has resulted in a number of new hybrid materials, enabling a diverse range of novel biological applications in nanomaterial assembly, biosensor development, and drug/gene delivery. In such materials, the molecular recognition, gene therapeutic, and structure-directing functions of DNA molecules are coupled with M/MC NPs. In turn, the M/MC NPs have optical, catalytic, pore structure, or photodynamic/photothermal properties, which are beneficial for sensing, theranostic, and drug loading applications. This review focuses on the different DNA functionalization protocols available for M/MC NPs, including gold NPs, upconversion NPs, metal-organic frameworks, metal oxide NPs and quantum dots. The biological applications of DNA-functionalized M/MC NPs in the treatment or diagnosis of cancers are discussed in detail.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Humans , Metal Nanoparticles/chemistry , Drug Delivery Systems , Metal-Organic Frameworks/chemistry , Neoplasms/drug therapy , DNA/chemistry , Nanoparticles/chemistry
2.
IEEE J Biomed Health Inform ; 27(8): 3770-3781, 2023 08.
Article in English | MEDLINE | ID: mdl-37022227

ABSTRACT

Diagnosis of skin lesions based on imaging techniques remains a challenging task because data (knowledge) uncertainty may reduce accuracy and lead to imprecise results. This paper investigates a new deep hyperspherical clustering (DHC) method for skin lesion medical image segmentation by combining deep convolutional neural networks and the theory of belief functions (TBF). The proposed DHC aims to eliminate the dependence on labeled data, improve segmentation performance, and characterize the imprecision caused by data (knowledge) uncertainty. First, the SLIC superpixel algorithm is employed to group the image into multiple meaningful superpixels, aiming to maximize the use of context without destroying the boundary information. Second, an autoencoder network is designed to transform the superpixels' information into potential features. Third, a hypersphere loss is developed to train the autoencoder network. The loss is defined to map the input to a pair of hyperspheres so that the network can perceive tiny differences. Finally, the result is redistributed to characterize the imprecision caused by data (knowledge) uncertainty based on the TBF. The proposed DHC method can well characterize the imprecision between skin lesions and non-lesions, which is particularly important for the medical procedures. A series of experiments on four dermoscopic benchmark datasets demonstrate that the proposed DHC yields better segmentation performance, increasing the accuracy of the predictions while can perceive imprecise regions compared to other typical methods.


Subject(s)
Skin Diseases , Humans , Skin Diseases/diagnostic imaging , Neural Networks, Computer , Algorithms , Cluster Analysis , Image Processing, Computer-Assisted/methods
3.
Sensors (Basel) ; 20(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32225091

ABSTRACT

Informative frequency band (IFB) selection is a challenging task in envelope analysis for the localized fault detection of rolling element bearings. In previous studies, it was often conducted with a single indicator, such as kurtosis, etc., to guide the automatic selection. However, in some cases, it is difficult for that to fully depict and balance the fault characters from impulsiveness and cyclostationarity of the repetitive transients. To solve this problem, a novel negentropy-induced multi-objective optimized wavelet filter is proposed in this paper. The wavelet parameters are determined by a grey wolf optimizer with two independent objective functions i.e., maximizing the negentropy of squared envelope and squared envelope spectrum to capture impulsiveness and cyclostationarity, respectively. Subsequently, the average negentropy is utilized in identifying the IFB from the obtained Pareto set, which are non-dominated by other solutions to balance the impulsive and cyclostationary features and eliminate the background noise. Two cases of real vibration signals with slight bearing faults are applied in order to evaluate the performance of the proposed methodology, and the results demonstrate its effectiveness over some fast and optimal filtering methods. In addition, its stability in tracking the IFB is also tested by a case of condition monitoring data sets.

SELECTION OF CITATIONS
SEARCH DETAIL
...