Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ann Nucl Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822897

ABSTRACT

PURPOSE: To establish and validate novel predictive models for predicting bone metastasis (BM) in newly diagnosed prostate adenocarcinoma (PCa) via single-photon emission computed tomography radiomics. METHOD: In a retrospective review of the clinical single-photon emission computed tomography (SPECT) database, 176 patients (training set: n = 140; validation set: n = 36) who underwent SPECT/CT imaging and were histologically confirmed to have newly diagnosed PCa from June 2016 to June 2022 were enrolled. Radiomic features were extracted from the region of interest (ROI) in a targeted lesion in each patient. Clinical features, including age, total prostate-specific antigen (t-PSA), and Gleason grades, were included. Statistical tests were then employed to eliminate irrelevant and redundant features. Finally, four types of optimized models were constructed for the prediction. Furthermore, fivefold cross-validation was applied to obtain sensitivity, specificity, accuracy, and area under the curve (AUC) for performance evaluation. The clinical usefulness of the multivariate models was estimated through decision curve analysis (DCA). RESULTS: A radiomics signature consisting of 27 selected features which were obtained by radiomics' LASSO treatment was significantly correlated with bone status (P < 0.01 for both training and validation sets). Collectively, the models showed good predictive efficiency. The AUC values ranged from 0.87 to 0.98 in four models. The AUC values of the human experts were 0.655 and 0.872 in the training and validation groups, respectively. Most radiomic models showed better diagnostic accuracy than human experts in the training and validation groups. DCA also demonstrated the superiority of the radiomics models compared to human experts. CONCLUSION: Radiomics models are superior to humans in differentiating between benign bone and prostate cancer bone metastases; it can be used to facilitate personalized prediction of BM in newly diagnosed PCa patients.

2.
Cancer Lett ; 592: 216921, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38705565

ABSTRACT

Cholangiocarcinoma (CCA), an exceptionally aggressive malignancy originating from the epithelium of the bile duct, poses a formidable challenge in cancer research and clinical management. Currently, attention is focused on exploring the oncogenic role and prognostic implications associated with Bmi1 in the context of CCA. In our study, we assessed the correlation of Bmi1 and Foxn2 expression across all types of CCA and evaluated their prognostic significance. Our results demonstrated that Bmi1 exhibits significantly upregulated expression in CCA tissues, while Foxn2 expression shows an inverse pattern. Simultaneously, the high expression of Bmi1, coupled with the low expression of Foxn2, indicates an unfavorable prognosis. Through in vitro and in vivo experiments, we confirmed the crucial role of Foxn2 in the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of CCA. Mechanistically, Bmi1 promotes the ubiquitination of histone H2A (H2AUb), leading to chromatin opening attenuation and a decrease in Foxn2 expression, ultimately driving CCA progression. Additionally, we described the potential value of Bmi1 and H2AUb inhibitors in treating CCA through in vitro experiments and orthotopic models. This study is of significant importance in deepening our understanding of the interaction between Bmi1 and Foxn2 in CCA and has the potential to advance the development of precision therapies for CCA.


Subject(s)
Bile Duct Neoplasms , Cell Proliferation , Cholangiocarcinoma , Disease Progression , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Histones , Polycomb Repressive Complex 1 , Ubiquitination , Animals , Female , Humans , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Cell Line, Tumor , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Epithelial-Mesenchymal Transition , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Histones/metabolism , Mice, Nude , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Prognosis , Mice, Inbred BALB C
3.
Gut ; 73(8): 1350-1363, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38458750

ABSTRACT

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mast Cells , Tumor Microenvironment , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Mast Cells/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Animals , Humans , Mice , Bile/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/metabolism , Histamine/metabolism , Cell Proliferation , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Degranulation
4.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37140231

ABSTRACT

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , MicroRNAs , Humans , Animals , Mice , Dinoprostone , MicroRNAs/genetics , Bile/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Hydroxyprostaglandin Dehydrogenases/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
5.
Hepatology ; 79(4): 798-812, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37505213

ABSTRACT

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Morpholines , Pyrimidines , Pyrroles , Humans , Cholangiocarcinoma/drug therapy , Epithelium , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Receptor, Fibroblast Growth Factor, Type 2 , GTPase-Activating Proteins
7.
Front Oncol ; 13: 1140103, 2023.
Article in English | MEDLINE | ID: mdl-37064120

ABSTRACT

Cholangiocarcinoma (CCA) is a highly malignant tumor of the hepatobiliary system that has failed to respond to many traditional therapies to a certain extent, including surgery, chemotherapy and radiotherapy. In recent years, the new therapeutic schemes based on immunology have fundamentally changed the systemic treatment of various malignant tumors to a certain extent. In view of the immunogenicity of CCA, during the occurrence and development of CCA, some immunosuppressive substances are released from cells and immunosuppressive microenvironment is formed to promote the escape immune response of its own cells, thus enhancing the malignancy of the tumor and reducing the sensitivity of the tumor to drugs. Some immunotherapy regimens for cholangiocarcinoma have produced good clinical effects. Immunotherapy has more precise characteristics and less adverse reactions compared with traditional treatment approaches. However, due to the unique immune characteristics of CCA, some patients with CCA may not benefit in the long term or not benefit at all after current immunotherapy. At present, the immunotherapy of CCA that have been clinically studied mainly include molecular therapy and cell therapy. In this article, we generalized and summarized the current status of immunotherapy strategies including molecular therapy and cell therapy in CCA in clinical studies, and we outlined our understanding of how to enhance the clinical application of these immunotherapy strategies.

8.
Animals (Basel) ; 13(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36899712

ABSTRACT

Global climate change has become a trend and is one of the main factors affecting biodiversity patterns and species distributions. Many wild animals adapt to the changing living environment caused by climate change by changing their habitats. Birds are highly sensitive to climate change. Understanding the suitable wintering habitat of the Eurasian Spoonbill (Platalea leucorodia leucorodia) and its response to future climatic change is essential for its protection. In China, it was listed as national grade II key protected wild animal in the adjusted State List of key protected wild animals in 2021, in Near Threatened status. Few studies on the distribution of the wintering Eurasian Spoonbill have been carried out in China. In this study, we simulated the suitable habitat under the current period and modeled the distribution dynamics of the wintering Eurasian Spoonbill in response to climate change under different periods by using the MaxEnt model. Our results showed that the current suitable wintering habitats for the Eurasian Spoonbill are mainly concentrated in the middle and lower reaches of the Yangtze River. Distance from the water, precipitation of the driest quarter, altitude, and mean temperature of the driest quarter contributed the most to the distribution model for the wintering Eurasian Spoonbill, with a cumulative contribution of 85%. Future modeling showed that the suitable distribution of the wintering Eurasian Spoonbill extends to the north as a whole, and the suitable area shows an increasing trend. Our simulation results are helpful in understanding the distribution of the wintering Eurasian Spoonbill under different periods in China and support species conservation.

9.
Clin Chim Acta ; 541: 117235, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36716909

ABSTRACT

Early and differential diagnosis of perihilar cholangiocarcinoma (PHCCA) is highly challenging. This study aimed to evaluate whether volatile organic compounds (VOCs) in bile samples could be emerging diagnostic biomarkers for PHCCA. We collected 200 bile samples from patients with PHCCA and benign biliary diseases (BBD), including a 140-patient training cohort and an 60-patient test cohort. Gas chromatography-ion mobility spectrometry (GC-IMS) was used for VOCs detection. The predictive models were constructed using machine learning algorithms. Our analysis detected 19 VOC substances using GC-IMS in the bile samples and resulted in the identification of three new VOCs, 2-methoxyfuran, propyl isovalerate, and diethyl malonate that were found in bile. Unsupervised hierarchical clustering analysis supported that VOCs detected in the bile could distinguish PHCCA from BBD. Twelve VOCs defined according to 32 signal peaks had significant statistical significance between BBD and PHCCA, including four up-regulated VOCs in PHCCA, such as 2-ethyl-1-hexanol, propyl isovalerate, cyclohexanone, and acetophenone, while the rest eight VOCs were down-regulated. ROC curve analysis revealed that machine learning models based on VOCs could help diagnosing PHCCA. Among them, SVM provided the highest AUC of 0·966, with a sensitivity and specificity of 93·1% and 100%, respectively. The diagnostic model based on different VOC spectra could be a feasible method for the differential diagnosis of PHCCA.


Subject(s)
Bile Duct Neoplasms , Klatskin Tumor , Volatile Organic Compounds , Humans , Klatskin Tumor/diagnosis , Volatile Organic Compounds/analysis , Bile/chemistry , Diagnosis, Differential , Gas Chromatography-Mass Spectrometry , Bile Duct Neoplasms/diagnosis
10.
Front Pharmacol ; 14: 1336685, 2023.
Article in English | MEDLINE | ID: mdl-38269274

ABSTRACT

Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.

11.
Front Immunol ; 13: 1049812, 2022.
Article in English | MEDLINE | ID: mdl-36389727

ABSTRACT

Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Humans , Bile , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/pathology , Biomarkers , Bile Ducts, Intrahepatic/pathology , Immunity
12.
Cell Mol Life Sci ; 79(9): 469, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35932322

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a class of malignant tumors originating from bile duct epithelial cells. Due to difficult early diagnosis and limited treatment, the prognosis of CCA is extremely poor. BMI1 is dysregulated in many human malignancies. However, the prognostic significance and oncogenic role of BMI1 in cholangiocarcinoma (CCA) are not well elucidated. METHODS: In the present study, we investigated its clinical importance and the potential mechanisms in the progression of CCA. We detected BMI1 expression in a large CCA cohort. We demonstrated that BMI1 was substantially upregulated in CCA tissues and was identified as an independent prognostic biomarker of CCA. Moreover, overexpression of BMI1 promoted CCA proliferation, migration, and invasion. And BMI1 knockdown could inhibit proliferation and metastases of CCA in vitro and in vitro/vivo validation. Interestingly, we found that CCA-derived exosomes contain BMI1 proteins, which can transfer BMI1 between CCA cells. The unique BMI1-containing exosomes promote CCA proliferation and metastasis through autocrine/paracrine mechanisms. In addition, we demonstrated that BMI1 inhibits CD8+T cell-recruiting chemokines by promoting repressive H2A ubiquitination in CCA cells. CONCLUSIONS: BMI1 is an unfavorable prognostic biomarker of CCA. Our data depict a novel function of BMI1 in CCA tumorigenesis and metastasis mediated by exosomes. Besides, BMI1 inhibition may augment immune checkpoint blockade to inhibit tumor progression by activating cell-intrinsic immunity of CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Exosomes , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Biomarkers , Carcinogenesis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Humans , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
13.
Oncogene ; 41(20): 2885-2896, 2022 05.
Article in English | MEDLINE | ID: mdl-35428876

ABSTRACT

Cholangiocarcinoma (CCA) is a type of highly malignant tumor originating from bile ducts. The prognosis of CCA is poor and the treatment options are limited. The biomarker study of CCA has made little progresses in recent years because of the difficulty to obtain CCA specimens. SOX9 is an important regulator of cholangiocyte proliferation and differentiation. We performed mRNA sequencing of CCA, retrieved TCGA data, and detected SOX9 expression in a large CCA cohort. With WNT3A stimulation, SOX9 expression and transcription was elevated by TCF7. Moreover, SOX9 was substantially up-regulated in CCA tissues and was identified as a prognostic biomarker of CCA. With mRNA sequencing and in vitro/vivo validation, we demonstrated that SOX9 enhanced the transcription and expression of FGF7 and FGFR2. FGF7 was significantly up-regulated in the bile and serum of CCA patients, and may promote CCA proliferation by activating FGFR2 in an autocrine pathway. co-expression of FGF7 and FGFR2 was a more sensitive marker for poor prognosis. SOX9-induced overexpression of FGF7 and FGFR2 was the key reason of SOX9-involved pemigatinib resistance. In conclusion, SOX9 and FGF7 were prognostic biomarkers of CCA. WNT3A-TCF7-SOX9 axis could induce pemigatinib resistance in two independent pathways: (1)SOX9 directly promotes FGFR2 transcription and expression; (2)SOX9 elevates FGF7 expression, which could be secreted from CCA cells and activates FGFR2 phosphorylation in an autocrine pathway.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Fibroblast Growth Factor 7/metabolism , Humans , Morpholines , Pyrimidines , Pyrroles , RNA, Messenger/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , T Cell Transcription Factor 1/metabolism
14.
Cell Death Differ ; 29(4): 818-831, 2022 04.
Article in English | MEDLINE | ID: mdl-34799729

ABSTRACT

Cholangiocarcinoma (CCA), consisting of three subtypes-intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA), is a highly aggressive cancer arising from the bile duct and has an extremely poor prognosis. Pemigatinib is the only FDA-approved targeted drug for CCA, and the CCA treatment options are substantially insufficient considering its poor prognosis and increasing morbidity. Here, we performed next-generation sequencing (NGS) of 15 pCCAs and 16 dCCAs and detected the expression of SMAD4, a frequently mutated gene, in 261 CCAs. By univariate and multivariate analyses, we identified Smad4 as a favorable prognostic biomarker in iCCA and pCCA. With in vitro and in vivo experiments, we demonstrated that Smad4 suppressed CCA proliferation, migration and invasion by inhibiting ß-catenin-S675 phosphorylation and intranuclear translocation. We applied LC-MS/MS and multiple biochemical techniques and identified PP1A as the phosphatase in Smad4-mediated dephosphorylation of PAK1-T423, which is responsible for ß-catenin-S675 phosphorylation. Moreover, we demonstrated that MYO18A is the PP1-interacting protein of PP1A for substrate recognition in CCA. MYO18A interacts with PP1A via its RVFFR motif and interacts with Smad4 via CC domain. Patients with coexpression of MYO18A and Smad4 have a more favorable prognosis than other patients. Smad4 enhances Pemigatinib efficiency, and Smad4 knockdown results in Pemigatinib resistance. In conclusion, coexpression of Smad4 and MYO18A is a favorable prognostic indicator for iCCA and pCCA. The Smad4-MYO18A-PP1A complex dephosphorylates PAK1-T423 and thus inhibits ß-catenin-S675 phosphorylation and its intranuclear localization. Smad4 suppresses CCA proliferation, migration, invasion, and sensitivity to Pemigatinib by governing the phosphorylation and intracellular localization of ß-catenin.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Chromatography, Liquid , Humans , Morpholines , Myosins/metabolism , Phosphorylation , Pyrimidines , Pyrroles , Smad4 Protein/metabolism , Tandem Mass Spectrometry , beta Catenin/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
15.
Cell Death Dis ; 12(12): 1158, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907179

ABSTRACT

Aldehyde dehydrogenases (ALDHs) play an essential role in regulating malignant tumor progression; however, their role in cholangiocarcinoma (CCA) has not been elucidated. We analyzed the expression of ALDHs in 8 paired tumor and peritumor perihilar cholangiocarcinoma (pCCA) tissues and found that ALDH3B1 and ALDH3B2 were upregulated in tumor tissues. Further survival analysis in intrahepatic cholangiocarcinoma (iCCA, n = 27), pCCA (n = 87) and distal cholangiocarcinoma (dCCA, n = 80) cohorts have revealed that ALDH3B2 was a prognostic factor of CCA and was an independent prognostic factor of iCCA and pCCA. ALDH3B2 expression was associated with serum CEA in iCCA and dCCA, associated with tumor T stage, M stage, neural invasion and serum CA19-9 in pCCA. In two cholangiocarcinoma cell lines, overexpression of ALDH3B2 promoted cell proliferation and clone formation by promoting the G1/S phase transition. Knockdown of ALDH3B2 inhibited cell migration, invasion, and EMT in vitro, and restrained tumor metastasis in vivo. Patients with high expression of ALDH3B2 also have high expression of ITGB1 in iCCA, pCCA, and dCCA at both mRNA and protein levels. Knockdown of ALDH3B2 downregulated the expression of ITGB1 and inhibited the phosphorylation level of c-Jun, p38, and ERK. Meanwhile, knockdown of ITGB1 inhibited the promoting effect of ALDH3B2 overexpression on cell proliferation, migration, and invasion. ITGB1 is also a prognostic factor of iCCA, pCCA, and dCCA and double-positive expression of ITGB1 and ALDH3B2 exhibits better performance in predicting patient prognosis. In conclusion, ALDH3B2 promotes tumor proliferation and metastasis in CCA by regulating the expression of ITGB1 and upregulating its downstream signaling pathway. The double-positive expression of ITGB1 and ALDH3B2 serves as a better prognostic biomarker of CCA.


Subject(s)
Aldehyde Dehydrogenase , Bile Duct Neoplasms , Cholangiocarcinoma , Integrin beta1 , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Humans , Integrin beta1/metabolism
16.
Front Oncol ; 11: 777617, 2021.
Article in English | MEDLINE | ID: mdl-34778094

ABSTRACT

Biliary tract cancers (BTCs), including cholangiocarcinoma (CCA) and gallbladder cancer (GC), are malignancies originating from the biliary tract with poor prognosis. In the early stage of BTCs, surgery is the only choice for cure. Unfortunately, most patients with BTC are diagnosed at an advanced stage and lose the opportunity for surgery. For many advanced solid tumors, antiangiogenic therapy has achieved encouraging results. While most clinical studies on antiangiogenic therapy in advanced BTCs have shown an excellent disease control rate (DCR), the improvement in overall survival (OS) is controversial. Understanding how the relevant signaling molecules influence the angiogenic response and the functional interaction is necessary for the formulation of new treatment regimens and the selection of enrolled patients. In this review, we aim to summarize and discuss the latest advances in antiangeogenesis for BTCs, mainly focusing on the molecular mechanism of angiogenesis in BTCs and the therapeutic effects from clinical trials. Furthermore, the horizon of antiangiogenesis for BTCs is highlighted.

17.
Cancer Cell Int ; 21(1): 525, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627260

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a malignancy with considerable morbidity and mortality. Abnormal metabolism is a hallmark of cancer; however, the mechanism of glycolysis regulation in NSCLC progression is not completely understood. Recent studies suggest that some dysregulated long non-coding RNAs (lncRNAs) play important roles in tumor metabolic reprogramming. METHODS: To identify glycolysis-associated-lncRNAs in NSCLC, we compared RNA-sequencing results between high 18F-fluorodeoxyglucose (FDG)-uptake NSCLC tissues and paired paratumor tissues. The transcript abundance of AL355338 in 80 pairs of clinical samples was evaluated by quantitative real-time PCR assay and fluorescence in situ hybridization. The biological role of AL355338 on NSCLC cells were evaluated by functional experiments in vitro and in vivo. Moreover, RNA pull-down, mass spectrometry and RNA immunoprecipitation (RIP) assays were used to identify the protein interacted with AL355338. Co-immunoprecipitation, in situ proximity ligation assays and western blotting were applied to define the potential downstream pathways of AL355338. RESULTS: AL355338 was an upregulated glycolysis-associated lncRNA in NSCLC. Functional assays revealed that AL355338 was critical for promoting aerobic glycolysis and NSCLC progression. Mechanistic investigations showed that AL355338 directly bound with alpha-enolase (ENO1) and enhanced the protein's stability by modulating its degradation and ubiquitination. A positive correlation was observed between AL355338 and ENO1 in NSCLC, and ENO1 was subsequently confirmed to be responsible for the oncogenic role of AL355338. Furthermore, AL355338 was capable of modulating ENO1/EGFR complex interaction and further activating EGFR-AKT signaling. CONCLUSIONS: This study indicates that AL355338 confers an aggressive phenotype to NSCLC, and targeting it might be an effective therapeutic strategy.

18.
Oncogene ; 40(30): 4941-4953, 2021 07.
Article in English | MEDLINE | ID: mdl-34163030

ABSTRACT

Treatment options for gallbladder carcinoma (GBC) are limited and GBC prognosis remains poor. There is no well-accepted targeted therapy to date, so effective biomarkers of GBC are urgently needed. Here we investigated the expression and correlations of fibroblast growth factor receptors (FGFR1-4) and 18 fibroblast growth factors (FGFs) in two independent patient cohorts and evaluated their prognostic significance. Consequently, we demonstrated that both FGF19 and FGFR4 were unfavorable prognostic biomarkers, and their co-expression was a more sensitive predictor. By analyzing the correlations between all 18 FGFs and FGFR4, we showed that FGF19 expression was significantly associated with FGFR4 and promoted GBC progression via stimulating FGFR4. With experiments using GBC cells, GPBAR1-/- mice models, and human subjects, we demonstrated that elevated bile acids (BAs) could increase the transcription and expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. FGF19 secreted from GBC cells promoted GBC progression by stimulating FGFR4 and downstream ERK in an autocrine manner with bile as a potential carrier. Patients with GBC had significantly higher FGF19 in serum and bile, compared to patients with cholelithiasis. BLU9931 inhibited FGFR4 and attenuated its oncogenic effects in GBC cell line. In conclusion, upregulation of BAs elevated co-expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. Co-expression of FGF19 and FGFR4 was a sensitive and unfavorable prognostic marker. GBC cells secreted FGF19 and facilitated progression by activating FGFR4 with bile as a potential carrier in an autocrine pathway.


Subject(s)
Cyclic AMP/metabolism , Early Growth Response Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Gallbladder Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Autocrine Communication , Biomarkers, Tumor , Cell Line , Cell Proliferation , Disease Progression , Disease Susceptibility , Gallbladder Neoplasms/etiology , Gallbladder Neoplasms/mortality , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Protein Binding , RNA, Messenger
19.
Int J Clin Oncol ; 26(7): 1212-1220, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33847856

ABSTRACT

PURPOSE: To investigate the pain-relieving effect and safety of three different doses of 188Re-hydroxyethylidine diphosphonate (HEDP) in patients with lung cancer and bone metastases. METHODS: For this randomised, phase 2 and multicenter trial, we enrolled patients with lung carcinoma and multifocal bone metastases and excluded patients who had received bisphosphonates or external-beam radiotherapy within the previous 4 weeks. Fifty-four patients were randomized to receive a single injection of 188Re-HEDP, at doses of 30, 40 or 50 MBq/kg (interval, 12 weeks). Patients were followed-up by assessment of numerical rating scale (NRS) score, global quality of life (QOL) score and adverse events (AEs). ANOVA analysis, Chi-Squared test and LSD-t test were used in this study. RESULTS: Significantly decreased NRS scores relative to baseline were observed in 40 MBq/kg group (Week 0 vs. Week 12: 6.0 ± 1.4 vs. 4.8 ± 2.5, P = 0.033) and 50 MBq/kg group (Week 0 vs. Week 12: 5.5 ± 1.5 vs. 4.5 ± 2.9, P = 0.046). Significant change of global QOL score from baseline was observed in 40 MBq/kg group at week 8 (global QOL score: P = 0.024, pain score: P = 0.041) and 50 MBq/kg group (pain score: P = 0.021) at week 12. No patients withdrew trial because of AEs in three groups. CONCLUSIONS: 188Re-HEDP at dose of 40 and 50 MBq/kg was generally effective to alleviate pain and improve QOL in lung cancer patients with painful bone metastases. 188Re-HEDP was safe and well-tolerated.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Organometallic Compounds , Prostatic Neoplasms , Bone Neoplasms/drug therapy , Bone Neoplasms/radiotherapy , Etidronic Acid , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Male , Palliative Care , Quality of Life
20.
Dig Liver Dis ; 53(9): 1192-1200, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33722502

ABSTRACT

BACKGROUND: Increasing studies have shown a vital fact that long non-coding RNAs (lncRNAs) play a considerable regulatory role in hepatocellular carcinoma (HCC) progression. However, whether ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sialyltransferase 6 antisense RNA 1 (ST8SIA6-AS1) affects the development of HCC is unclear. METHODS: The target genes in HCC cell lines were quantified via utilzing quantitative real-time polymerase chain reaction (RT-qPCR) analysis and western blot. Effects of ST8SIA6-AS1 on proliferative, apoptosis and migratory ability of HCC cells were proved by a series of function experiments. The cellular distribution of ST8SIA6-AS1 was examined through fluorescent in situ hybridization (FISH) assay and subcellular fractionation experiments. RNA pulldown assay was implemented to explore the target of ST8SIA6-AS1. RNA Binding Protein Immunoprecipitation (RIP) and luciferase reporter assays were performed to identify the specific relationships between miR-338-3p and ST8SIA6-AS1/ non-POU domain containing octamer binding (NONO). RESULTS: The expression of ST8SIA6-AS1 was apparently elevated in HCC cell. Silenced ST8SIA6-AS1 reduced proliferative, migratory and invasive ability of HCC cells. Moreover, ST8SIA6-AS1 targeted miR-338-3p to modulate the expression of NONO in HCC cells. CONCLUSIONS: ST8SIA6-AS1 enhances the progression of HCC via miR-338-3p/NONO axis in vitro.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Long Noncoding/metabolism , Sialyltransferases/metabolism , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...