Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
PLoS One ; 19(9): e0309696, 2024.
Article in English | MEDLINE | ID: mdl-39264955

ABSTRACT

This study proposes a new method to evaluate the effectiveness of orebody grade estimations, drawing upon the analysis of existing evaluation methods for grade estimation. This new approach addresses factors such as uneven sampling and asymmetric estimation range, which are challenging to overcome with existing evaluation techniques. The core principle of this method involves documenting how frequently individual samples are used during grade estimation and calculating the total distance weights for each sample. Subsequently, the usage frequency and total weight of the samples are standardized, and these standardized values are weighted based on the sample grades. A comparison is made between the weighted sample grades and the estimated grades, with the closeness between the two serving as a metric for assessing the effectiveness of the estimation. This study compares the new evaluation method to the direct comparison and cross-validation methods, examining the effectiveness of grade estimation using the inverse distance weighting (IDW) method. The findings revealed that: (1) The new evaluation method theoretically accounts for the systematic deviation between the statistical measures of estimated and sample grades resulting from uneven sample distribution, offering a fresh approach for enhancing the effectiveness of orebody grade estimation. (2) In the grade estimation of experimental Fe samples, the frequency of usage and the sum of distance weights were unequal. This inequality significantly contributes to the systematic deviation between the estimated and sample grades. (3) Comparing the new evaluation method to others confirms the stability and reliability of the new approach for evaluating the effectiveness of orebody grade estimation. This novel method demonstrates theoretical advantages and practical utility. (4) The deviation between the estimated grades and the statistical results of sample grades is influenced by the distribution pattern of sample grades, the spatial relationship between samples and estimation blocks, and the inherent systematic error associated with the IDW method. This systematic error cannot be overlooked.

2.
Sci Rep ; 13(1): 6208, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069285

ABSTRACT

Estimation of ore grade is very important for the value evaluation of ore deposits, and it directly affects the development of mineral resources. To improve the accuracy of the inverse distance weighting (IDW) method in ore grade estimation and reduce the smoothing effect of the IDW method in grade estimation, the weight calculation method involved in the IDW method was improved. The length parameter of the ore sample was used to calculate the weight of the IDW method. The length of the ore samples was used as a new factor of the weighting calculation. A new method of IDW integrated with sample length weighting (IDWW) was proposed. The grade estimation of Li, Al, and Fe in porcelain clay ore was used as a case study. A comparative protocol for grade estimation via the IDWW method was designed and implemented. The number of samples involved in the estimation, sample combination, sample grade distribution, and other factors affecting the grade estimation were considered in the experimental scheme. The grade estimation results of the IDWW and the IDW methods were used for comparative analysis of grades of the original and combined samples. The estimated results of the IDWW method were also compared with those of the IDW method. The deviation analysis of the estimated grade mainly included the minimum, maximum, mean, and coefficient of variation of the ore grade. The estimation effect of IDWW method was verified. The minimum deviations of the estimated grade of Li, Al, and Fe were between 9.129% and 59.554%. The maximum deviations were between 4.210 and 22.375%. The mean deviations were between - 1.068 and 7.187%. The deviations in the coefficient of variation were between 3.076 and 36.186%. The deviations in the maximum, minimum, mean, and coefficients of variation of the IDWW were consistent with those of the IDW, demonstrating the accuracy and stability of the IDWW method. The more the samples involved in the estimation, the greater the estimation deviations of IDW and IDWW methods. The estimated deviations of Li, Al, and Fe were affected by the shape of the grade distribution, when the same estimation parameters were used. The grade distribution pattern of the samples significantly influenced the grade estimation results. The IDWW method offers significant theoretical advantages and addresses the adverse effects of uneven sample lengths on the estimates. The IDWW method can effectively reduce the smoothing effect and improves the utilization efficiency of the original samples.

3.
Cell Mol Neurobiol ; 35(2): 283-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25304289

ABSTRACT

Activation of glutamate receptors and followed increase of intracellular calcium concentration is a key pathological mechanism involved in secondary neuronal injury after traumatic brain injury (TBI). Stromal interaction molecule (STIM) proteins are considered to be important players in regulating neuronal Ca(2+) homeostasis under normal aging and pathological conditions. Here, we investigated the role of STIM1 in regulating metabotropic glutamate receptor 1 (mGluR1)-related Ca(2+) signaling and neuronal survival by using an in vitro traumatic neuronal injury (TNI) model. The expression of STIM1 was significantly increased at both mRNA and protein levels after TNI. Down-regulation of STIM1 by specific small interfere RNA significantly preserved neuronal viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death after traumatic injury. Moreover, knockdown of STIM1 significantly alleviated the mGluR1-related increase of cytoplasmic Ca(2+) levels after TNI. By analyzing Ca(2+) imaging in Ca(2+)-free conditions, we demonstrated that the mGluR1-dependent inositol trisphosphate receptor and/or ryanodine receptor-mediated Ca(2+) release from the endoplasmic reticulum after TNI is strongly attenuated in the absence of STIM1. Together, our results demonstrate that in the mammalian nervous system, STIM1 is a key regulator of mGluR1-dependent Ca(2+) signaling and knockdown of STIM1 might be an effective intervention target in TBI.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Cerebral Cortex/pathology , Gene Knockdown Techniques , Neurons/metabolism , Neurons/pathology , Receptors, Metabotropic Glutamate/metabolism , Animals , Apoptosis , Cell Survival , Endoplasmic Reticulum/metabolism , Intracellular Space/metabolism , Mice, Inbred C57BL , Stromal Interaction Molecule 1
4.
Opt Express ; 22(7): 8367-75, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718210

ABSTRACT

A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2105-8, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24159856

ABSTRACT

In the present paper, strain in GaN epitaxial layer grown by hydride vapor phase epitaxy (HVPE) was investigated by means of high-resolution X-ray diffraction (HRXRD), Raman spectra and photoluminescence (PL) measurements. Both the biaxial in-plane and out-of-plane strains (of the order of -10(-4) and 10(-4), respectively) and the hydrostatic strain component (of the order of -10(-5)) were extracted from HRXRD measurements. These values agreed well with the ones computed from the blue-shift of E2 Raman mode and the near-band-edge PL peak. The results showed that strains in GaN layer were superposed by the biaxial strain and hydrostatic strain.

SELECTION OF CITATIONS
SEARCH DETAIL