Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(8): 085503, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31675739

ABSTRACT

Novel multi-walled carbon nanotubes coated with poly[N-(ferrocenyl formacyl) pyrrole] (MWCNTs@PFFP) nanocomposites were prepared through the in situ oxidation polymerization reaction of N-(ferrocenyl formacyl) pyrrole in the presence of MWCNTs. The MWCNTs@PFFP nanocomposites were characterized by FT-IR, Raman, TGA, XRD, XPS, SEM and TEM techniques. The MWCNTs@PFFP nanocomposites were fabricated into novel electrochemical sensors for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The electrochemical behavior of the MWCNTs@PFFP/GCE sensors was examined, and the parameters that influence electrochemical signals were optimized. The experimental results showed that the fabricated modified electrode sensors exhibited good sensitivity, selectivity, specificity, repeatability and a long lifetime, remaining the initial current of at least 92.5% after 15 days storage in air. The sensors possessed a linear response concentration range over 200-400 µM for AA, 2-16 µM for both DA and UA, and a limit of detection as low as 40.0, 1.1 and 7.3 × 10-1 µM for AA, DA and UA, respectively. They are expected to be used as a potential tool for the simultaneous detection of DA, AA and UA in the human body.

2.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569770

ABSTRACT

An electrochemical sensor for detection of the content of aspartame was developed by modifying a glassy carbon electrode (GCE) with multi-walled carbon nanotubes decorated with zinc oxide nanoparticles and in-situ wrapped with poly(2-methacryloyloxyethyl ferrocenecarboxylate) (MWCNTs@ZnO/PMAEFc). MWCNTs@ZnO/PMAEFc nanohybrids were prepared through reaction of zinc acetate dihydrate with LiOH·H2O, followed by reversible addition-fragmentation chain transfer polymerization of 2-methacryloyloxyethyl ferrocenecarboxylate, and were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), scanning electron microscope (SEM), and transmission electron microscope (TEM) techniques. The electrochemical properties of the prepared nanohybrids with various composition ratios were examined by cyclic voltammetry (CV), and the trace additives in food and/or beverage was detected by using differential pulse voltammetry (DPV). The experimental results indicated that the prepared nanohybrids for fabrication of electrochemical modified electrodes possess active electroresponse, marked redox current, and good electrochemical reversibility, which could be mediated by changing the system formulations. The nanohybrid modified electrode sensors had a good peak current linear dependence on the analyte concentration with a wide detection range and a limit of detection as low as about 1.35 × 10-9 mol L-1, and the amount of aspartame was measured to be 35.36 and 40.20 µM in Coke zero, and Sprite zero, respectively. Therefore, the developed nanohybrids can potentially be used to fabricate novel electrochemical sensors for applications in the detection of beverage and food safety.

3.
Analyst ; 144(16): 4897-4907, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31312831

ABSTRACT

Novel nanocomposites consisting of polystyrene-block-polybutadienyl polyhexamethylene dicarbamate-block-polystyrene (PS-b-HTPB5-b-PS) and multiwalled carbon nanotubes (MWCNTs) were designed and prepared via noncovalent interactions. Scanning electron microscopy and transmission electron microscopy observations showed that segregated networks of MWCNTs were formed due to the cladding of PS-b-HTPB5-b-PS, presenting a parallel-arranged topology of the MWCNTs in a continuous PS-b-HTPB5-b-PS phase, which improved the dispersibility of the MWCNTs. The nanocomposites were fabricated into vapor sensing elements to detect CH2Cl2 vapor in the environment, exhibiting excellent responsive sensitivity, reproducibility and a low limit of detection (LOD) of 1 ppm when exposed to CH2Cl2 vapor. The chain extension of HTPB overcame the fragility and improved the tenacity of the thin films, and the responsivity was optimized by adjusting the content of the MWCNTs and the length of the PS chains. The newly developed conductive composites can be applied as a promising vapor sensor to accurately monitor CH2Cl2 vapor in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...