Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
J Colloid Interface Sci ; 674: 336-344, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38936090

ABSTRACT

Sluggish kinetics and severe structural instability of manganese-based cathode materials for rechargeable aqueous zinc-ion batteries (ZIBs) lead to low-rate capacity and poor cyclability, which hinder their practical applications. Pillaring manganese dioxide (MnO2) by pre-intercalation is an effective strategy to solve the above problems. However, increasing the pre-intercalation content to realize stable cycling of high capacity at large current densities is still challenging. Here, high-rate aqueous Zn2+ storage is realized by a high-capacity K+-pillared multi-nanochannel MnO2 cathode with 1 K per 4 Mn (δ-K0.25MnO2). The high content of the K+ pillar, in conjunction with the three-dimensional confinement effect and size effect, promotes the stability and electron transport of multi-nanochannel layered MnO2 in the ion insertion/removal process during cycling, accelerating and accommodating more Zn2+ diffusion. Multi-perspective in/ex-situ characterizations conclude that the energy storage mechanism is the Zn2+/H+ ions co-intercalating and phase transformation process. More specifically, the δ-K0.25MnO2 nanospheres cathode delivers an ultrahigh reversible capacity of 297 mAh g-1 at 1 A g-1 for 500 cycles, showing over 96 % utilization of the theoretical capacity of δ-MnO2. Even at 3 A g-1, it also delivered a 63 % utilization and 64 % capacity retention after 1000 cycles. This study introduces a highly efficient cathode material based on manganese oxide and a comprehensive analysis of its structural dynamics. These findings have the potential to improve energy storage capabilities in ZIBs significantly.

2.
Materials (Basel) ; 17(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930348

ABSTRACT

Aluminum (Al) and its alloys are widely used in various fields due to their excellent physical properties. Although many efforts have been made to fabricate an Al-based composite, they usually results in a significant decrease in electrical conductivity. Herein, a special layer-structured Al/graphene (Gr)/Al composite was successfully designed and fabricated through a facile method using the ultrasonic spraying of graphene powder with alumina removal and a subsequent vacuum hot-pressing process. The as-obtained Al/Gr/Al composite presents a significantly enhanced electrical conductivity of 66% IACS, which is much higher than that of other reported Al-based composites, while it still maintains similar mechanical properties. This work provides a new strategy for the development of highly conductive Al-based composites, which would be very useful and important for practical applications.

3.
Food Chem Toxicol ; 190: 114832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908816

ABSTRACT

Rare Earth Elements (REEs) have been implicated in potential health effects. However, the health risk of REE exposure among tea drinkers in China remains poorly understood. This study aimed to characterize the concentration of REEs in different tea categories and evaluate the associated health risks for tea consumers in China. By analyzing the content of 16 REEs in 4326 tea samples from China, the exposure level of REEs to the general population was estimated. The content of these 16 REEs was similar across six types of tea, with oolong tea exhibiting the highest levels. The concentration of light rare earth elements (LREEs) in six types of tea was higher than that of heavy rare earth elements (HREEs). The daily mean and 95th percentile (P95) exposure to REEs from tea for the general population in China were 0.0328 µg/kg BW and 0.1283 µg/kg BW, respectively, which are significantly lower than the temporary acceptable daily dose (tADI). Our findings suggest that REEs from tea do not pose a known health risk to Chinese consumers.


Subject(s)
Metals, Rare Earth , Tea , Tea/chemistry , Metals, Rare Earth/analysis , China , Risk Assessment , Humans , Food Contamination/analysis , Dietary Exposure
4.
ACS Appl Mater Interfaces ; 16(26): 33475-33484, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38886899

ABSTRACT

To meet the requirements of long-range electric vehicles and aviation, the high-mass-loading electrode with high areal capacity is a promising solution to realize ultrahigh-energy lithium-metal batteries (LMBs). However, enabling the operation of high mass loading with a long cycling life is still a challenge without in-depth investigation. Herein, we figured out that the polarization appearing in the cycled lithium-metal anodes (LMAs) is responsible for the poor cycling of LMBs with high mass loading. Moreover, the origin of fast degradation of LMAs is affected by mass loading through the Li plating process, which is decided by the Li plating morphology. Hence, manipulating the mass loading can directly promote lithium reversibility and further mitigate cell polarization in LMBs, endowing high-mass-loading LMBs with excellent cycling stability. Consequently, we achieved an ultrahigh energy density (605 W h kg-1) of a 10.1 A h pouch cell with an excellent retention of 91.7% capacity and 86% energy after 50 cycles. The feasible strategy points out a promising approach for designing high-energy-density LMBs in the future.

5.
Foods ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611372

ABSTRACT

Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.

6.
ACS Omega ; 9(10): 11347-11355, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496927

ABSTRACT

The identification of active components is critical for the development of sports supplements. However, high-throughput screening of active components remains a challenge. This study sought to construct prediction models to screen active components from herbal medicines via machine learning and validate the screening by using cell-based assays. The six constructed models had an accuracy of >0.88. Twelve randomly selected active components from the screening were tested for their active potency on C2C12 cells, and 11 components induced a significant increase in myotube diameters and protein synthesis. The effect and mechanism of luteolin among the 11 active components as potential sports supplements were then investigated by using immunofluorescence staining and high-content imaging analysis. It showed that luteolin increased the skeletal muscle performance via the activation of PGC-1α and MAPK signaling pathways. Thus, high-throughput prediction models can be effectively used to screen active components as sports supplements.

7.
Article in English | MEDLINE | ID: mdl-38376088

ABSTRACT

Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.

8.
Quant Imaging Med Surg ; 14(1): 765-776, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223092

ABSTRACT

Background: Primary percutaneous coronary intervention (PPCI) has been widely recognized as the preferred treatment for ST-segment-elevation myocardial infarction (STEMI). However, substantial numbers of STEMI patients cannot receive timely PPCI. Early fibrinolysis followed by routine percutaneous coronary intervention (FPCI) has been proposed as an effective and safe alternative for eligible patients. To date, few studies have compared FPCI with PPCI in terms of microvascular reperfusion. This study aimed to evaluate the microvascular function of FPCI and PPCI. Methods: STEMI patients at the Peking University First Hospital and Miyun Hospital were enrolled in this retrospective study between January 2015 to December 2020. Microvascular function documented by the coronary angiography-derived index of microvascular resistance (caIMR) was measured at the final angiogram after revascularization. The primary end point was the caIMR of the culprit vessels. The secondary end points were in-hospital and follow-up major adverse cardiovascular events (MACE), including cardiovascular death, non-fatal recurrent myocardial infarction, target-vessel revascularization (TVR), and non-fatal stroke/transient ischemic attacks (TIA). Details of the adverse clinical events were obtained from telephone interviews and electronic medical record systems until January 2022. Results: In total, 496 STEMI patients were enrolled in this cross-sectional retrospective study. Of these patients, 81 underwent FPCI, and 415 underwent PPCI. At the baseline, the PPCI patients had a higher-risk profile than the FPCI patients. The time from symptom onset to reperfusion therapy was significantly shorter in the FPCI group than the PPCI group (median 3.0 vs. 4.5 hours; P<0.001). The caIMR was significantly lower in the FPCI group than the PPCI group (median 20.34 vs. 40.33; P<0.001). The median follow-up duration was 4.1 years. During the follow-up period, the rate of MACE was lower in the FPCI group than the PPCI group [7 (10.1%) vs. 82 (20.8%), P=0.048]. After propensity score matching to adjust for the imbalances at the baseline, the caIMR remained significant and the clinical outcomes did not differ significantly between the two groups. Conclusions: In eligible STEMI patients, clinically successful FPCI may be associated with better microvascular reperfusion and comparable clinical outcomes as compared with PPCI.

9.
Adv Mater ; 36(6): e2307118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016087

ABSTRACT

Rapid proton transport in solid-hosts promotes a new chemistry in achieving high-rate Faradaic electrodes. Exploring the possibility of hydronium intercalation is essential for advancing proton-based charge storage. Nevertheless, this is yet to be revealed. Herein, a new host is reported of hexagonal molybdates, (A2 O)x ·MoO3 ·(H2 O)y (A = Na+ , NH4 + ), and hydronium (de)intercalation is demonstrated with experiments. Hexagonal molybdates show a battery-type initial reduction followed by intercalation pseudocapacitance. Fast rate of 200 C (40 A g-1 ) and long lifespan of 30 000 cycles are achieved in electrodes of monocrystals even over 200 µm. Solid-state nuclear magnetic resonance confirms hydronium intercalations, and operando measurements using electrochemical quartz crystal microbalance and synchrotron X-ray diffraction disclose distinct intercalation behaviours in different electrolyte concentrations. Remarkably, characterizations of the cycled electrodes show nearly identical structures and suggest equilibrium products are minimally influenced by the extent of proton solvation. These results offer new insights into proton electrochemistry and will advance correlated high-power batteries and beyond.

10.
Front Toxicol ; 5: 1292373, 2023.
Article in English | MEDLINE | ID: mdl-38046399

ABSTRACT

Novel techniques and methodologies are being developed to advance food safety risk assessment into the next-generation. Considering the shortcomings of traditional animal testing, new approach methodologies (NAMs) will be the main tools for the next-generation risk assessment (NGRA), using non-animal methodologies such as in vitro and in silico approaches. The United States Environmental Protection Agency and the European Food Safety Authority have established work plans to encourage the development and application of NAMs in NGRA. Currently, NAMs are more commonly used in research than in regulatory risk assessment. China is also developing NAMs for NGRA but without a comprehensive review of the current work. This review summarizes major NAM-related research articles from China and highlights the China National Center for Food Safety Risk Assessment (CFSA) as the primary institution leading the implementation of NAMs in NGRA in China. The projects of CFSA on NAMs such as the Food Toxicology Program and the strategies for implementing NAMs in NGRA are outlined. Key issues and recommendations, such as discipline development and team building, are also presented to promote NAMs development in China and worldwide.

11.
J Transl Med ; 21(1): 917, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38105236

ABSTRACT

Syphilis, a sexually transmitted disease (STD) caused by Treponema pallidum (T. pallidum), has had a worldwide resurgence in recent years and remains a public health threat. As such, there has been a great deal of research into clinical strategies for the disease, including diagnostic biomarkers and possible strategies for treatment and prevention. Although serological testing remains the predominant laboratory diagnostic method for syphilis, it is worth noting that investigations pertaining to the DNA of T. pallidum, non-coding RNAs (ncRNAs), chemokines, and metabolites in peripheral blood, cerebrospinal fluid, and other bodily fluids have the potential to offer novel perspectives on the diagnosis of syphilis. In addition, the global spread of antibiotic resistance, such as macrolides and tetracyclines, has posed significant challenges for the treatment of syphilis. Fortunately, there is still no evidence of penicillin resistance. Hence, penicillin is the recommended course of treatment for syphilis, whereas doxycycline, tetracycline, ceftriaxone, and amoxicillin are viable alternative options. In recent years, efforts to discover a vaccine for syphilis have been reignited with better knowledge of the repertoire of T. pallidum outer membrane proteins (OMPs), which are the most probable syphilis vaccine candidates. However, research on therapeutic interventions and vaccine development for human subjects is limited due to practical and ethical considerations. Thus, the preclinical model is ideal for conducting research, and it plays an important role in clinical transformation. Different preclinical models have recently emerged, such as in vitro culture and mouse models, which will lay a solid foundation for clinical treatment and prevention of syphilis. This review aims to provide a comprehensive summary of the most recent syphilis tactics, including detection, drug resistance treatments, vaccine development, and preclinical models in clinical practice.


Subject(s)
Syphilis , Vaccines , Animals , Mice , Humans , Syphilis/drug therapy , Treponema pallidum , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Doxycycline/therapeutic use , Vaccines/therapeutic use
12.
ACS Appl Mater Interfaces ; 15(39): 45764-45773, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37726198

ABSTRACT

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells. Specifically, the oxidative stability of the LHCE was found to heavily rely on the ratio between salt and solvating solvent, where local-saturation was necessary to stabilize performance. Through molecular dynamics (MD) simulations, this behavior was found to be a result of aggregated solvation structures of Li+/anion pairs. This LHCE system was found to produce significantly improved LMR cycling (95.8% capacity retention after 100 cycles) relative to a carbonate control as a result of improved cathode-electrolyte interphase (CEI) chemistry from X-ray photoelectron spectroscopy (XPS), and cryogenic transmission electron microscopy (cryo-TEM). Leveraging this stability, 4 mAh cm-2 LMR||2× Li full cells were demonstrated, retaining 87% capacity after 80 cycles in LHCE, whereas the control electrolyte produced rapid failure. This work uncovers the benefits, design requirements, and performance origins of LHCE electrolytes for high-voltage Li||LMR batteries.

13.
Mol Microbiol ; 120(5): 684-701, 2023 11.
Article in English | MEDLINE | ID: mdl-37718557

ABSTRACT

Syphilis is a persistent sexually transmitted disease caused by infiltration of the elusive pathogen Treponema pallidum. Despite the prevalence of human polymorphonuclear neutrophils (hPMNs) within cutaneous lesions, which are characteristic of incipient syphilis, their role in T. pallidum infection remains unclear. Tp92 is the only T. pallidum helical outer membrane protein that exhibits structural features similar to those of outer membrane proteins in other gram-negative bacteria. However, the functional mechanism of this protein in immune cells remains unclear. Neutrophils are short-lived cells that undergo innate apoptosis in response to external stimuli that typically influence this process. In this study, we determined that Tp92 impedes the activation of procaspase-3 via the ERK MAPK, PI3K/Akt, and NF-κB signaling pathways, consequently suppressing caspase-3 activity within hPMNs, and thereby preventing hPMNs apoptosis. Furthermore, Tp92 could also modulate hPMNs apoptosis by enhancing the expression of the anti-apoptotic protein Mcl-1, stimulating IL-8 secretion, and preserving the mitochondrial membrane potential. These findings provide valuable insights into the molecular mechanisms underlying T. pallidum infection and suggest potential therapeutic targets for syphilis treatment.


Subject(s)
NF-kappa B , Syphilis , Humans , NF-kappa B/metabolism , Treponema pallidum/genetics , Treponema pallidum/metabolism , Syphilis/metabolism , Syphilis/microbiology , Syphilis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Membrane Proteins/metabolism , Neutrophils , Apoptosis
14.
Cardiol J ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772351

ABSTRACT

BACKGROUND: Nearly half of ST-segment elevation myocardial infarction (STEMI) patients present with significant multivessel coronary artery disease, they are at high risk of subsequent adverse events. Whether complete revascularization guided by coronary angiography-derived fractional flow reserve (caFFR) further reduces such events risk is not fully investigated. METHODS: In this study, 367 consecutive STEMI patients who underwent successful primary percutaneous coronary intervention (PCI) were enrolled. caFFR of all three coronary vessels were measured, including 367 culprit vessels and 703 non-culprit vessels. Complete revascularization was defined as post-PCI caFFR > 0.8 of all three coronary vessels. The primary endpoint was major adverse cardiovascular events (MACE, a composite of cardiovascular death, non-fatal recurrent myocardial infarction, ischemia-driven revascularization and non-fatal stroke/transient ischemic attacks) during follow-up. RESULTS: At a median follow-up of 3.8 years, MACE had occurred in 39 patients of the 220 (17.7%) in the complete revascularization group as compared with 49 patients of the 131 (37.4%) in the incomplete revascularization group (hazard ratio [HR] 1.9; 95% confidence interval [CI] 1.2-3.0; p = 0.005). The incomplete revascularization in culprit vessels evaluated by caFFR showed the highest risk for MACE occurrence. CONCLUSIONS: In STEMI patients with multivessel coronary artery disease, incomplete revascularization based on caFFR might contribute to identifying patients at high-risk.

15.
Micromachines (Basel) ; 14(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37420978

ABSTRACT

Suspended graphene film is of great significance for building high-performance electrical devices. However, fabricating large-area suspended graphene film with good mechanical properties is still a challenge, especially for the chemical vapor deposition (CVD)-grown graphene films. In this work, the mechanical properties of suspended CVD-grown graphene film are investigated systematically for the first time. It is found that monolayer graphene film is hard to maintain on circular holes with a diameter of tens of micrometers, which can be improved greatly by increasing the layer of graphene films. The mechanical properties of CVD-grown multilayer graphene films suspended on a circular hole with a diameter of 70 µm can be increased by 20%, and multilayer graphene films prepared by layer-layer stacking process can be increased by up to 400% for the same size. The corresponding mechanism was also discussed in detail, which might pave the way for building high-performance electrical devices based on high-strength suspended graphene film.

17.
J Phys Chem Lett ; 14(19): 4575-4582, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37162124

ABSTRACT

Li-rich layered oxides (LLOs) are regarded as one of the most desirable cathode materials due to their high specific capacity. Nevertheless, the irreversible oxygen release associated with low oxygen stability prevents their widespread application. Herein, an improved oxygen redox reversibility was achieved by constructing Ni2+-O2--Ni2+ configurations. Superconducting Quantum Interference Device (SQUID) magnetometry measurements are used to track the evolution of the Ni2+-O2--Ni2+ configuration during the electrochemical process. The strongest 180° superexchange interaction in the Ni2+-O2--Ni2+ configuration, derived from the inevitable Li/Ni mixing in LLOs, regulates the local structure to form the ferrimagnetic (FiM) structural units. Consequently, the FiM structural units prevent the irreversible oxygen release and endow LLOs with high initial Coulombic efficiency (ICE). This work emphasizes the importance of the Ni2+-O2--Ni2+ configuration for LLOs with high reversible capacity and proposes a synthesis approach to modulate the amount of FiM structural units.

18.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049286

ABSTRACT

Hydrotalcite, first found in natural ores, has important applications in supercapacitors. NiCoAl-LDH, as a hydrotalcite-like compound with good crystallinity, is commonly synthesized by a hydrothermal method. Al3+ plays an important role in the crystallization of hydrotalcite and can provide stable trivalent cations, which is conducive to the formation of hydrotalcite. However, aluminum and its hydroxides are unstable in a strong alkaline electrolyte; therefore, a secondary alkali treatment is proposed in this work to produce cation vacancies. The hydrophilicity of the NiCoAl-OH surface with cation vacancy has been greatly improved, which is conducive to the wetting and infiltration of electrolyte in water-based supercapacitors. At the same time, cation vacancies generate a large number of defects as active sites for energy storage. As a result, the specific capacity of the NiCoAl-OH electrode after 10,000 cycles can be maintained at 94.1%, which is much better than the NiCoAl-LDH material of 74%.

19.
Materials (Basel) ; 16(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36984158

ABSTRACT

Lithium metal is one of the most promising anode materials for lithium-ion batteries; however, lithium dendrite growth hinders its large-scale development. So far, the dendrite formation mechanism is unclear. Herein, the dynamic evolution of lithium deposition in etheryl-based and ethylene carbonate (EC)-based electrolytes was obtained by combining an in situ electrochemical atomic force microscope (EC-AFM) with an electrochemical workstation. Three growth modes of lithium particles are proposed: preferential, merged, and independent growth. In addition, a lithium deposition schematic is proposed to clearly describe the morphological changes in lithium deposition. This schematic shows the process of lithium deposition, thus providing a theoretical basis for solving the problem of lithium dendrite growth.

20.
Materials (Basel) ; 16(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770126

ABSTRACT

It is significantly important to modulate the electrical properties of graphene films through doping for building desired electronic devices. One of the effective doping methods is the chemical vapor deposition (CVD) of graphene films with heteroatom doping during the process, but this usually results in nitrogen-doped graphene with low doping levels, high defect density, and low carrier mobility. In this work, we developed a novel condensation-assisted CVD method for the synthesis of high-quality nitrogen-doped graphene (NG) films at low temperatures of 400 °C using solid 3,4,5-trichloropyridine as a carbon and nitrogen source. The condensation system was employed to reduce the volatilization of the solid source during the non-growth stage, which leads to a great improvement of quality of as-prepared NG films. Compared to the one synthesized using conventional CVD methods, the NG films synthesized using condensation-assisted CVD present extremely low defects with a ratio of from D- to G-peak intensity (ID/IG) in the Raman spectrum lower than 0.35. The corresponding total N content, graphitic nitrogen/total nitrogen ratio, and carrier mobility reach 3.2 at%, 67%, and 727 cm2V-1S-1, respectively. This improved condensation-assisted CVD method provides a facile and well-controlled approach for fabricating high-quality NG films, which would be very useful for building electronic devices with high electrical performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...