Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 176: 1-10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723449

ABSTRACT

Recognizing talkers' identity via speech is an important social skill in interpersonal interaction. Behavioral evidence has shown that listeners can identify better the voices of their native language than those of a non-native language, which is known as the language familiarity effect (LFE). However, its underlying neural mechanisms remain unclear. This study therefore investigated how the LFE occurs at the neural level by employing functional near-infrared spectroscopy (fNIRS). Late unbalanced bilinguals were first asked to learn to associate strangers' voices with their identities and then tested for recognizing the talkers' identities based on their voices speaking a language either highly familiar (i.e., native language Chinese), or moderately familiar (i.e., second language English), or completely unfamiliar (i.e., Ewe) to participants. Participants identified talkers the most accurately in Chinese and the least accurately in Ewe. Talker identification was quicker in Chinese than in English and Ewe but reaction time did not differ between the two non-native languages. At the neural level, recognizing voices speaking Chinese relative to English/Ewe produced less activity in the inferior frontal gyrus, precentral/postcentral gyrus, supramarginal gyrus, and superior temporal sulcus/gyrus while no difference was found between English and Ewe, indicating facilitation of voice identification by the automatic phonological encoding in the native language. These findings shed new light on the interrelations between language ability and voice recognition, revealing that the brain activation pattern of the LFE depends on the automaticity of language processing.


Subject(s)
Language , Recognition, Psychology , Spectroscopy, Near-Infrared , Speech Perception , Voice , Humans , Spectroscopy, Near-Infrared/methods , Female , Male , Recognition, Psychology/physiology , Young Adult , Voice/physiology , Speech Perception/physiology , Adult , Multilingualism , Brain Mapping , Reaction Time/physiology , Brain/physiology , Brain/diagnostic imaging
2.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005308

ABSTRACT

Aromatic ketones are important pharmaceutical intermediates, especially the pyridin-2-yl-methanone motifs. Thus, synthetic methods for these compounds have gained extensive attention in the last few years. Transition metals catalyze the oxidation of Csp3-H for the synthesis of aromatic ketones, which is arresting. Here, we describe an efficient copper-catalyzed synthesis of pyridin-2-yl-methanones from pyridin-2-yl-methanes through a direct Csp3-H oxidation approach with water under mild conditions. Pyridin-2-yl-methanes with aromatic rings, such as substituted benzene, thiophene, thiazole, pyridine, and triazine, undergo the reaction well to obtain the corresponding products in moderate to good yields. Several controlled experiments are operated for the mechanism exploration, indicating that water participates in the oxidation process, and it is the single oxygen source in this transformation. The current work provides new insights for water-involving oxidation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...