Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Med ; 23(6): 703-713, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28481359

ABSTRACT

Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.


Subject(s)
Biomarkers, Tumor/genetics , DNA, Neoplasm/genetics , Neoplasm Metastasis/genetics , Neoplasms/genetics , Cohort Studies , Data Mining , Feasibility Studies , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Neoplasms/pathology , Prospective Studies , Sequence Analysis, DNA
3.
ChemSusChem ; 1(5): 417-24, 2008.
Article in English | MEDLINE | ID: mdl-18702136

ABSTRACT

Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes.


Subject(s)
Alkanes/chemistry , Biomass , Carbohydrates/chemistry , Catalysis , Ketones/chemistry , Molecular Structure , Molecular Weight , Temperature , Water/chemistry
4.
Nature ; 447(7147): 982-5, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17581580

ABSTRACT

Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.


Subject(s)
Bioelectric Energy Sources/trends , Biomass , Fructose/chemistry , Fructose/metabolism , Furans/chemical synthesis , Furans/metabolism , Carbohydrate Metabolism , Catalysis , Conservation of Energy Resources/methods , Conservation of Energy Resources/trends , Ethanol/chemistry , Furans/chemistry , Oxygen/analysis , Oxygen/chemistry , Phase Transition , Solubility , Transportation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...