Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 127(5): 1269-1278, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35294269

ABSTRACT

Neuronal persistent activity (PA) is a common phenomenon observed in many types of neurons. PA can be induced in neurons in the mouse auditory nucleus by activating cholinergic receptors with carbachol (CCh), a dual muscarinic and nicotinic receptor agonist. PA is presumed to be associated with learning-related auditory plasticity at the cellular level. However, the mechanism is not clearly understood. Many studies have reported that muscarinic receptor agonists inhibit muscarinic-sensitive potassium channels (M channels). Potassium efflux through M channels produces potassium currents, called M currents, that play an essential role in regulating neural excitability and synaptic plasticity. Further study is needed to determine whether M currents affect the PA of auditory central neurons and provide additional analysis of the variations in electrophysiological properties. We used in vitro whole cell patch-clamp recordings in isolated mouse brain slices to investigate the effects of M currents on the PA in pyramidal neurons in layer V of the primary auditory cortex (AI-L5). We found that blocking M currents with XE991 depolarized the AI-L5 pyramidal neurons, which significantly increased the input resistance. The active threshold and threshold intensity were significantly reduced, indicating that intrinsic excitability was enhanced. Our results also showed that blocking M currents with XE991 switched the neuronal firing patterns in the AI-L5 pyramidal neurons from regular spiking to intrinsic bursting. Blocking M currents facilitated PA by increasing the plateau potential and enhancing intrinsic excitability. Our results suggested that blocking M currents might facilitate the PA in AI-L5 pyramidal neurons, which underlies auditory plasticity.NEW & NOTEWORTHY Persistent activity (PA) in AI-L5 pyramidal neurons plays an essential role in acoustic information processing. We used in vitro whole cell patch-clamp recordings to investigate the effects of M currents on the PA in AI-L5 pyramidal neurons. Blocking M currents with XE991 facilitated PA by increasing the plateau potential and enhancing intrinsic excitability, causing the firing patterns of AI-L5 pyramidal neurons to become more bursting. These results provide new insight into our understanding of the cellular mechanisms that govern learning-induced auditory plasticity.


Subject(s)
Auditory Cortex , Animals , Auditory Cortex/physiology , Cholinergic Agents/pharmacology , Mice , Patch-Clamp Techniques , Potassium/pharmacology , Pyramidal Cells/physiology
2.
Dig Dis Sci ; 63(9): 2285-2293, 2018 09.
Article in English | MEDLINE | ID: mdl-29781054

ABSTRACT

BACKGROUND: This study was designed to explore the anticancer potential of isoalantolactone, a sesquiterpene lactone, on esophageal squamous cell carcinoma (ESCC) cells and associated molecular mechanisms. METHODS: ESCC cell lines were treated with isoalantolactone or vehicle and tested for viability, proliferation, cell cycle distribution, and apoptosis. Xenograft tumor studies in nude mice were done to examine the in vivo anticancer effect of isoalantolactone. RESULTS: Isoalantolactone treatment reduced ESCC cell viability and proliferation in vitro, which was coupled with induction of G0/G1 cell cycle arrest and apoptosis. In vivo studies confirmed the growth-suppressive effect of isoalantolactone on ESCC cells. Mechanistically, isoalantolactone reversed microRNA-21-mediated repression of programmed cell death 4 (PDCD4). Overexpression of microRNA-21 and knockdown of PDCD4 blocked the growth suppression and apoptosis induction by isoalantolactone in ESCC cells. CONCLUSIONS: Isoalantolactone shows growth-suppressive activity against ESCC cells, which is ascribed to upregulation of PDCD4 via downregulation of microRNA-21.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation/drug effects , Esophageal Neoplasms/drug therapy , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Sesquiterpenes/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Down-Regulation , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Signal Transduction/drug effects , Time Factors , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...