Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(19): 5729-5736, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708832

ABSTRACT

Quantum-dot light-emitting diodes (QLEDs), a kind of promising optoelectronic device, demonstrate potential superiority in next-generation display technology. Thermal cross-linked hole transport materials (HTMs) have been employed in solution-processed QLEDs due to their excellent thermal stability and solvent resistance, whereas the unbalanced charge injection and high cross-linking temperature of cross-linked HTMs can inhibit the efficiency of QLEDs and limit their application. Herein, a low-temperature cross-linked HTM of 4,4'-bis(3-(((4-vinylbenzyl)oxy)methyl)-9H-carbazol-9-yl)-1,1'-biphenyl (DV-CBP) with a flexible styrene side chain is introduced, which reduces the cross-linking temperature to 150 °C and enhances the hole mobility up to 1.01 × 10-3 cm2 V-1 s-1. More importantly, the maximum external quantum efficiency of 21.35% is successfully obtained on the basis of the DV-CBP as a cross-linked hole transport layer (HTL) for blue QLEDs. The low-temperature cross-linked high-mobility HTL using flexible side chains could be an excellent alternative for future HTL development.

2.
Phytomedicine ; 128: 155334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554573

ABSTRACT

BACKGROUND: The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE: To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS: The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS: The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION: The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.


Subject(s)
Biological Products , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Biological Products/pharmacology , Biological Products/chemistry , Humans , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/chemistry , Signal Transduction/drug effects , Animals
3.
Genome Biol ; 25(1): 16, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216972

ABSTRACT

BACKGROUND: The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS: Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS: We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.


Subject(s)
Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Cell Cycle Proteins/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins/metabolism , RNA-Binding Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Analyst ; 149(1): 196-204, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38013467

ABSTRACT

Oxidative stress, a condition involving an imbalance between reactive oxygen species (ROS) and antioxidants, is closely linked to epilepsy, contributing to abnormal neuronal excitability. This study introduces a novel fluorescent probe, the MDP probe, designed for the efficient detection of malondialdehyde (MDA), a critical biomarker associated with oxidative stress. The MDP probe offers several key advantages, including high sensitivity with a low detection limit of 0.08 µM for MDA, excellent selectivity for MDA even in the presence of interfering substances, and biocompatibility, making it suitable for cell-based experiments. The probe allows for real-time monitoring of MDA levels, enabling dynamic studies of oxidative stress. In vivo experiments in mice demonstrate its potential for monitoring MDA levels, particularly in epilepsy models, which could have implications for disease research and diagnosis. Overall, the MDP probe represents a promising tool for studying oxidative stress, offering sensitivity and specificity in cellular and in vivo settings. Its development opens new avenues for exploring the role of oxidative stress in various biological processes and diseases, contributing to advancements in healthcare and biomedical research.


Subject(s)
Fluorescent Dyes , Oxidative Stress , Mice , Animals , Malondialdehyde , Fluorescent Dyes/toxicity , Fluorescence , Reactive Oxygen Species
5.
Nat Commun ; 14(1): 7464, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016946

ABSTRACT

Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.


Subject(s)
Homeodomain Proteins , Leukemia , Female , Mice , Animals , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Leukemia/genetics , Neoplasm Proteins/metabolism , Up-Regulation , Chromatin , Gene Expression Regulation, Leukemic
6.
Eur J Med Chem ; 260: 115770, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37651878

ABSTRACT

KAT6A has been identified as a new target for leukemia treatment. The histone acetyltransferase activity of KAT6A is essential for normal hematopoietic stem cell self-renewal, and mutations or translocations are regarded as one of the major causes of leukemia development. In previous studies, CTX-0124143 has been shown to be a class of KAT6A inhibitors with a sulfonyl hydrazide backbone. However, weak activity, poor selectivity and pharmacokinetic problems have hindered its clinical application. In this work, the N‒N bond in compound CTX-0124143 was replaced by an N-C bond, and the aromatic rings were replaced on both sides. Finally, we obtained Compound 6j. Compared to CTX-0124143, 6j showed a 16-fold stronger inhibition of KAT6A (0.49 µM vs. 0.03 µM) with high selectivity. In addition, 6j exhibited strong antitumor activity on four leukemia cell lines. Moreover, 6j showed significant improvement in metabolic stability and pharmacokinetics in vivo and in vitro. In conclusion, 6j shows excellent potential as a promising anti-leukemia drug candidate.


Subject(s)
Leukemia , Humans , Leukemia/drug therapy , Acetylation , Cell Line , Hydrazines , Sulfanilamide , Histone Acetyltransferases
7.
Signal Transduct Target Ther ; 8(1): 198, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169756

ABSTRACT

Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor A , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Signal Transduction
8.
Expert Opin Ther Pat ; 32(9): 953-968, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35982031

ABSTRACT

INTRODUCTION: Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate gene transcription and cell growth by binding to acetylated lysine residues on histones. They are involved in many physiological processes and pathological conditions, such as cancer, inflammation, and metabolic diseases. Blockade of BET proteins has become an encouraging approach for the treatment of these human diseases, especially cancer. To date, a number of potent and specific BET inhibitors have been discovered and many of them have entered clinical trials. AREAS COVERED: This review aims at providing an overview of molecular mechanisms of BET inhibitors and highlighting the research advancements published in recent patent literatures between 2018 and 2021. Web of Science, PubMed, SciFinder, WIPO, EPO, USPTO and CNIPA databases were used for searching the literature and patents for BET inhibitors. EXPERT OPINION: In recent years, an increasing number of structurally diverse BET inhibitors have been identified, including pan BET inhibitors, BD1 or BD2 selective BET inhibitors, bivalent BET inhibitors, kinase and BET dual inhibitors, and BET-PROTACs. Despite many challenges, BET inhibitors have high potential in the treatment of cancer and other diseases, and the development of next-generation BET inhibitors could be promising.


Subject(s)
Neoplasms , Transcription Factors , Cell Proliferation , Gene Expression Regulation , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Patents as Topic , Transcription Factors/metabolism
9.
Front Immunol ; 13: 930397, 2022.
Article in English | MEDLINE | ID: mdl-35757735

ABSTRACT

Metabolic disorders (i.e., hyperglycemia, hyperlipidemia, and hyperinsulinemia) cause increased secretion of inflammatory cytokines/chemokines, leading to gradual loss of cardiac resident macrophage population and increased accumulation of inflammatory monocytes/macrophages in the heart. Such self-perpetuating effect may contribute to the development of cardiomyopathy during diabetes. Recent meta-analysis data reveal that lipocalin 10 (Lcn10) is significantly downregulated in cardiac tissue of patients with heart failure but is increased in the blood of septic patients. However, the functional role of Lcn10 in cardiac inflammation triggered by metabolic disorders has never been investigated. In this study, we demonstrate that the expression of Lcn10 in macrophages was significantly decreased under multiple metabolic stress conditions. Furthermore, Lcn10-null macrophages exhibited pro-inflammatory phenotype in response to inflammation stimuli. Next, using a global Lcn10-knockout (KO) mouse model to induce type-2 diabetes (T2D), we observed that loss of Lcn10 promoted more pro-inflammatory macrophage infiltration into the heart, compared to controls, leading to aggravated insulin resistance and impaired cardiac function. Similarly, adoptive transfer of Lcn10-KO bone marrow cells into X-ray irradiated mice displayed higher ratio of pro-/anti-inflammatory macrophages in the heart and worsened cardiac function than those mice received wild-type (WT) bone marrows upon T2D conditions. Mechanistically, RNA-sequencing analysis showed that Nr4a1, a nuclear receptor known to have potent anti-inflammatory effects, is involved in Lcn10-mediated macrophage activation. Indeed, we found that nuclear translocation of Nr4a1 was disrupted in Lcn10-KO macrophages upon stimulation with LPS + IFNγ. Accordingly, treatment with Cytosporone B (CsnB), an agonist of Nr4a1, attenuated the pro-inflammatory response in Lcn10-null macrophages and partially improved cardiac function in Lcn10-KO diabetic mice. Together, these findings indicate that loss of Lcn10 skews macrophage polarization to pro-inflammatory phenotype and aggravates cardiac dysfunction during type-2 diabetes through the disruption of Nr4a1-mediated anti-inflammatory signaling pathway in macrophages. Therefore, reduction of Lcn10 expression observed in diabetic macrophages may be responsible for the pathogenesis of diabetes-induced cardiac dysfunction. It suggests that Lcn10 might be a potential therapeutic factor for diabetic heart failure.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Heart Failure , Lipocalins , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Heart Failure/metabolism , Heart Failure/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Lipocalins/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
10.
PLoS One ; 16(8): e0256206, 2021.
Article in English | MEDLINE | ID: mdl-34415910

ABSTRACT

In the field of Differential Evolution (DE), a number of measures have been used to enhance algorithm. However, most of the measures need revision for fitting ensemble of different combinations of DE operators-ensemble DE algorithm. Meanwhile, although ensemble DE algorithm may show better performance than each of its constituent algorithms, there still exists the possibility of further improvement on performance with the help of revised measures. In this paper, we manage to implement measures into Ensemble of Differential Evolution Variants (EDEV). Firstly, we extend the collecting range of optional external archive of JADE-one of the constituent algorithm in EDEV. Then, we revise and implement the Event-Triggered Impulsive (ETI) control. Finally, Linear Population Size Reduction (LPSR) is used by us. Then, we obtain Improved Ensemble of Differential Evolution Variants (IEDEV). In our experiments, good performers in the CEC competitions on real parameter single objective optimization among population-based metaheuristics, state-of-the-art DE algorithms, or up-to-date DE algorithms are involved. Experiments show that our IEDEV is very competitive.


Subject(s)
Computational Biology , Evolution, Molecular , Genetics, Population , Algorithms , Artificial Intelligence , Computer Simulation , Mutation/genetics , Population Density
11.
Org Biomol Chem ; 19(25): 5539-5543, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34105588

ABSTRACT

Psidguajones A and B, a pair of dimeric sesquiterpene-based meroterpenoid epimers, have been isolated from the leaves of Psidium guajava for the first time. Their structures were confirmed by comprehensive spectroscopic techniques combined with a comparison of experimental and calculated ECD data.


Subject(s)
Psidium
12.
Quant Imaging Med Surg ; 10(3): 766-778, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269935

ABSTRACT

BACKGROUND: We demonstrate an innovative approach of automated sleep recording formed on the electroencephalogram (EEG) with one channel. METHODS: In this study, double-density dual-tree discrete wavelet transformation (DDDTDWT) was used for decomposing the image, and marginal Fisher analysis (MFA) was used for reducing the dimension. A proposed model on unprocessed EEG models was used on monitored training of 5-group sleep phase forecasting. RESULTS: Our network includes a 14-row structure, and a 30-s period was extracted as input in order to be categorized which is followed by second and third period prior to the first 30-s period. Another consecutive period for temporal tissue was added which is not required to a signal preprocess and attribute data derivation phase. Our means of evaluating and improving our approach was to use input from the Sleep Heart Health Study (SHHS), which is a large study field aimed at using research from numerous centers and people and which studies the records of specialist-rated polysomnography (PSG). Performance measures could reach the desired level, which is a precision of 0.87 and a Cohen's kappa of 0.81. CONCLUSIONS: The use of a large, collaborative study of specialist graders can enhance the likelihood of good globalization. Overall, the novel approach learned by our network showcases the models based on each category.

13.
Cells ; 9(1)2020 01 03.
Article in English | MEDLINE | ID: mdl-31947892

ABSTRACT

Macrophages are critical for regulation of inflammatory response during endotoxemia and septic shock. However, the mediators underlying their regulatory function remain obscure. Growth differentiation factor 3 (GDF3), a member of transforming growth factor beta (TGF-ß) superfamily, has been implicated in inflammatory response. Nonetheless, the role of GDF3 in macrophage-regulated endotoxemia/sepsis is unknown. Here, we show that serum GDF3 levels in septic patients are elevated and strongly correlate with severity of sepsis and 28-day mortality. Interestingly, macrophages treated with recombinant GDF3 protein (rGDF3) exhibit greatly reduced production of pro-inflammatory cytokines, comparing to controls upon endotoxin challenge. Moreover, acute administration of rGDF3 to endotoxin-treated mice suppresses macrophage infiltration to the heart, attenuates systemic and cardiac inflammation with less pro-inflammatory macrophages (M1) and more anti-inflammatory macrophages (M2), as well as prolongs mouse survival. Mechanistically, GDF3 is able to activate Smad2/Smad3 phosphorylation, and consequently inhibits the expression of nod-like receptor protein-3 (NLRP3) in macrophages. Accordingly, blockade of Smad2/Smad3 phosphorylation with SB431542 significantly offsets rGDF3-mediated anti-inflammatory effects. Taken together, this study uncovers that GDF3, as a novel sepsis-associated factor, may have a dual role in the pathophysiology of sepsis. Acute administration of rGDF3 into endotoxic shock mice could increase survival outcome and improve cardiac function through anti-inflammatory response by suppression of M1 macrophage phenotype. However, constitutive high levels of GDF3 in human sepsis patients are associated with lethality, suggesting that GDF3 may promote macrophage polarization toward M2 phenotype which could lead to immunosuppression.


Subject(s)
Growth Differentiation Factor 3/metabolism , Heart/physiopathology , Inflammation/pathology , Macrophages/pathology , Sepsis/prevention & control , Sepsis/physiopathology , Adult , Animals , Case-Control Studies , Cell Polarity/drug effects , Cytokines/biosynthesis , Endotoxins , Growth Differentiation Factor 3/blood , Growth Differentiation Factor 3/genetics , Humans , Inflammation/blood , Mice, Inbred C57BL , Models, Biological , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Sepsis/blood , Smad Proteins/metabolism , Spleen/pathology , Survival Analysis , Treatment Outcome
14.
J Hazard Mater ; 390: 121649, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31753673

ABSTRACT

Improving the sustainability and cost-effectiveness of biochar production is crucial to meet increased global market demand. Here, we developed a single-step microwave steam activation (STMSA) as a simplified yet efficient method to produce microwave activated biochar (MAB) from waste palm shell (WPS). The STMSA recorded a higher heating rate (70 °C/min) and higher conversion (45 wt%) of WPS into highly microporous MAB (micropore surface area of 679.22 m2/g) in contrast with the conventional heating approach (≤ 12-17 wt%). The MAB was then applied as biosorbent for hazardous landfill leachate (LL) treatment and the adsorption performance was compared with commercial activated carbon under different pH, adsorbent quantity, adsorbate concentrations, and contact times. The MAB demonstrated high adsorption capacity, achieving maximum adsorption efficiency at 595 mg/g and 65 % removal of chemical oxygen demand (COD) with 0.4 g/L of adsorbent amount under optimal acidic conditions (pH ≈ 2-3) after 24 h of contact time. The Freundlich isotherm and pseudo second-order kinetic models were well-fitted to explain the equilibrium adsorption and kinetics. The results indicate the viability of STMSA as a fast and efficient approach to produce activated biochar as a biosorbent for the treatment of hazardous landfill leachate.


Subject(s)
Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Arecaceae , Microwaves , Porosity , Pyrolysis , Steam
15.
Org Lett ; 21(21): 8700-8704, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31609125

ABSTRACT

Psiguajdianone (1), a novel caryophyllene-derived meroterpenoid dimer, was isolated from Psidium guajava. The structure of 1 was determined by X-ray analysis and confirmed by total synthesis. Our synthetic strategy involves biomimetic cascade Knoevenagel condensation/hetero-Diels-Alder reaction and dimerization. Notably, the caryophyllene-derived meroterpenoids obtained during our synthesis were first identified as artifacts in the laboratory, and five of them were proven to be natural products present in the plant. Moreover, these compounds show significant anti-inflammatory activity.


Subject(s)
Biomimetics , Psidium/chemistry , Terpenes/chemistry , Terpenes/chemical synthesis , Chemistry Techniques, Synthetic
16.
Chemosphere ; 230: 294-302, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31108440

ABSTRACT

Used baby diaper consists of a combination of decomposable cellulose, non-biodegradable plastic materials (e.g. polyolefins) and super-absorbent polymer materials, thus making it difficult to be sorted and separated for recycling. Microwave pyrolysis was examined for its potential as an approach to transform used baby diapers into value-added products. Influence of the key operating parameters comprising process temperature and microwave power were investigated. The pyrolysis showed a rapid heating process (up to 43 °C/min of heating rate) and quick reaction time (20-40 min) in valorizing the used diapers to generate pyrolysis products comprising up to 43 wt% production of liquid oil, 29 wt% gases and 28 wt% char product. Microwave power and operating temperature were observed to have impacts on the heating rate, process time, production and characteristics of the liquid oil and solid char. The liquid oil contained alkanes, alkenes and esters that can potentially be used as chemical additives, cosmetic products and fuel. The solid char contained high carbon, low nitrogen and free of sulphur, thus showing potential for use as adsorbents and soil additives. These observations demonstrate that microwave pyrolysis has great prospect in transforming used baby diaper into liquid oil and char products that can be utilised in several applications.


Subject(s)
Diapers, Infant , Microwaves , Pyrolysis , Recycling/methods , Charcoal/analysis , Gases/analysis , Mineral Oil/analysis , Models, Theoretical
17.
Anal Chim Acta ; 1051: 120-128, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30661608

ABSTRACT

The ultrasound wave assisted synthesis of a novel ZnWO3/rGO hybrid nono composition (ZnWO3/rGO HNC) as a high performance sensor for formaldehyde (FA) has been reported. Different techniques of analysis such as XRD, FE-SEM, TGA, XPS, HRTEM and BET were applied for morphological and spectroscopic characterization of the ZnWO3/rGO HNC. The sensing evaluation of the constructed sensor showed high selectivity, sensitivity and a linear correlation between achieved responses and concentration of target gas (1-10 ppm) with R2 = 0.993 at temperature of 95 °C. The determination of FA was validated and performed using gas chromatography-mass spectrometry combined by solid phase micro-extraction after derivatization with O-(2,3,4,5,6-pentafluoro-benzyl)-hydroxylamine hydrochloride. Validation was carried out in terms of limit of detection linearity, precision, and recovery. The mechanistic evaluation of sensing behavior of the ZnWO3/rGO HNC was interpreted based on large specific surface area (SSA) to volume, mesoporous structure and the heterojunction between rGO and ZnWO3 at the interface between the rGO and ZnWO3.

18.
Saudi J Biol Sci ; 25(7): 1509-1513, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30505202

ABSTRACT

Onions (Allium cepa L.) comprise a valuable vegetable crop in many countries. Modern scientific research has shown that onions possess many biological activities, including antibacterial, anticancer, hypoglycemic, hypolipidemic, antiplatelet aggregation, and antioxidant activities. The goal of this study was to investigate the impact of total onion polyphenols on antioxidant and xanthine oxidase (XO) inhibitory activities. Total onion polyphenols showed significant antioxidant activity in DPPH, FRAP, and OH-assays (IC50 [µg/mL]), 43.24, 560.61, and 12.97, respectively). In a X/XO system, antioxidant properties of these polyphenols significantly inhibited XO activity (IC50 [µg/mL], 17.36). These results indicated that total onion polyphenols showed promising antioxidant and anti-gout properties and might be used as potential, natural drugs against oxidative diseases after successful studies in vivo as well as clinical trials.

19.
Saudi J Biol Sci ; 25(6): 1196-1201, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30174522

ABSTRACT

Pterocarpus is often used to make high-grade furniture, with beneficial health functions on the human body. Therefore, this article with large fruit red sandalwood as an example, to explore its extract on the human body beneficial health care ingredients. FT-IR analysis, in the 2855-3421 cm-1 wave segment, ethyl acetate after extraction of large fruit red sandalwood powder infrared transmittance increased the maximum value; GC-MS analysis, large fruit red sandalwood in the human body with a cough and phlegm, detoxification and enhance human immunity and other effects. Among them, Homopterocarpin in the inhibition and killing of cancer cell activity outstanding performance. Cryptomeridiol is a natural product with anti-Alzheimer's disease and antispasmodic properties, with significant medicinal value.

20.
Saudi J Biol Sci ; 25(3): 465-468, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29686510

ABSTRACT

Bamboo macromolecules were pretreated with bamboo vinegar, which has an antibacterial property, and processed into antibacterial bioboard (ABB) by hot pressing. The ABB was then analyzed by conducting Fourier-transform infrared spectroscopy, thermogravimetric analysis and differential thermal analysis. Results showed that ABB samples had average density of 1.0 g/cm3, which is appropriate for application. The physical and mechanical properties were best for the ABB sample pretreated with bamboo vinegar and hot pressed at 165 °C for 10 min. Fourier-transform infrared spectroscopy revealed that the optimum conditions for hot pressing were a temperature of 165 °C, duration of 10 min, and the addition of bamboo vinegar. Thermogravimetric analysis/differential thermal analysis curves indicated that the thermal degradation of the ABB was less than that of bamboo, revealing that hot pressing increased the thermal stability of ABB samples. Analysis revealed that pretreatment with bamboo vinegar improved the antibacterial property of the ABB.

SELECTION OF CITATIONS
SEARCH DETAIL
...