Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202408186, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895811

ABSTRACT

The development of novel metal-organic frameworks (MOFs) as efficient photocatalysts for hydrogen peroxide production from water and oxygen is particularly interesting, yet remains a challenge. Herein, we have prepared four cyclic trinuclear units (CTUs) based MOFs, exhibiting good light absorption ability and suitable bandgaps for photosynthesis of H2O2. However, Cu-CTU-based MOFs are not able to photocatalyzed the formation of H2O2, while the alteration of metal nodes from Cu-CTU to Ag-CTU dramatically enhances the photocatalytic performance for H2O2production and the production rates can reach as high as 17476 µmol g-1 h-1 with an apparent quantum yield of 9.51%, at 420 nm, which is much higher than most reported MOFs. The photocatalytic mechanism is comprehensively studied by combining the isotope labeling experiments and DFT calculation. This study provides new insights into the preparation of MOF photocatalysts with high activity for H2O2 production through molecular engineering.

2.
Biomimetics (Basel) ; 8(4)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37622950

ABSTRACT

Sea cucumber manual monitoring and fishing present various issues, including high expense and high risk. Meanwhile, compared to underwater bionic robots, employing autonomous underwater robots for sea cucumber monitoring and capture also has drawbacks, including low propulsion efficiency and significant noise. Therefore, this paper is concerned with the design of a robotic manta ray for sea cucumber recognition, localization, and approach. First, the developed robotic manta ray prototype and the system framework applied to real-time target search are elaborated. Second, by improved YOLOv5 object detection and binocular stereo-matching algorithms, precise recognition and localization of sea cucumbers are achieved. Thirdly, the motion controller is proposed for autonomous 3D monitoring tasks such as depth control, direction control, and target approach motion. Finally, the capabilities of the robot are validated through a series of measurements. Experimental results demonstrate that the improved YOLOv5 object detection algorithm achieves detection accuracies (mAP@0.5) of 88.4% and 94.5% on the URPC public dataset and self-collected dataset, respectively, effectively recognizing and localizing sea cucumbers. Control experiments were conducted, validating the effectiveness of the robotic manta ray's motion toward sea cucumbers. These results highlight the robot's capabilities in visual perception, target localization, and approach and lay the foundation to explore a novel solution for intelligent monitoring and harvesting in the aquaculture industry.

3.
Bioinspir Biomim ; 16(6)2021 09 15.
Article in English | MEDLINE | ID: mdl-34433157

ABSTRACT

In this paper, a novel continuum robotic dolphin termed 'ConRoDolI' is proposed and developed. The biomimetic robot features dual tendon driving continuum mechanisms that are utilized to replicate the twisting and bending motions of the dolphin's caudal vertebrae and thoracic vertebrae. More importantly, a central pattern generator based kinematics is analyzed to yield stable dolphin-like swimming. In the meantime, the relationship between the backbone shape and both the tendon length as well as position and orientation are explored. Furthermore, multimodal swimming gaits are designed to pave the way for a three-dimensional (3D) swimming decoupling solution, involving forwarding swimming, multiple yaw patterns, and multiple pitch patterns. All of these endow the robotic dolphin with 3D maneuverability. Finally, extensive experiments demonstrate the feasibility of the proposed biomimetic mechatronic design and control approach. The forward swimming speed is 0.44 body lengths per second (BL/s). The steering radius of the robot is about 0.11 BL with an angular velocity of 10°/s and the diving speed is about 0.13 BL/s. The average propulsion efficiency is about 0.6 with the maximum is over 0.8. The obtained results shed light on the improvement of aquatic maneuverability associated with new-concept underwater vehicles.


Subject(s)
Dolphins , Robotic Surgical Procedures , Robotics , Animals , Biomechanical Phenomena , Biomimetics , Swimming , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...