Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 517
Filter
1.
Article in English | MEDLINE | ID: mdl-38824472

ABSTRACT

Currently, large quantities of spent mushroom substrate (SMS) are produced annually. Because SMS has high water retention and nutrients, it has great potential to replace traditional topsoil for raising seedlings in agricultural production. However, few studies have examined the effects of substituting SMS for paddy soil on rice seedling growth and soil nutrients. SMS was mixed with rice soil in different proportions (20%, 50%, and 80%), and chemical fertilizer, organic fertilizer, and peat substrate were added in addition to equivalent nitrogen as a traditional seedling nursery method for comparison. Compared to traditional paddy soil (CK), the seedling qualities of the three SMS ratio treatments were all higher. Adding SMS at different ratios promoted rice seedling root growth, elevated the soluble protein concentration, and amplified the superoxide dismutase (SOD) enzymatic action in rice seedlings. Total porosity and aeration porosity of the soil increased by 17.40% and 32.90%, respectively. Soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) increased by 21.26-118.48%, 50.44-71.68%, and 23.08-80.17%, respectively. Besides, the relative abundance of Bacillus, Bacteroidetes, and other bacteria as well as the abundance of Ascomycota were all significantly increased. Adding 50% SMS increased the abundance of Pseudomonas by 8.42 times. The seedling quality of the 50% SMS treatment was even higher than chemical fertilizer and organic fertilizer treatments, only second to the peat substrate treatment. In summary, partial substitution of paddy soil with SMS can ameliorate substrate properties, improve seedling quality, and increase microbial diversity, indicating the suitability of SMS as a replacement for rice soil in seedling substrates. The 50% SMS ratio is the best. This study provides a basis for SMS to replace traditional rice soil in seedling cultivation.

2.
J Invest Dermatol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838771

ABSTRACT

Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early pro-inflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to pro-resolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. Here, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet also accelerated timely switching from M1 to M2 phenotypes. Exosomes inhibition dysregulated macrophage responses resulting in aberrant inflammation and impaired healing, while provision of exogenous fibroblast exosomes corrected defects. Topical application of fibroblast exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.

3.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
4.
Sci Rep ; 14(1): 11406, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762649

ABSTRACT

This work considers the flow field as two-dimensional turbulent flow and studies the steady-state properties of heat transfer and the pressure of the suspension nozzle. An adiabatic wall parallel to the moving wall and two slit entrances at either end of the adiabatic wall make up the rectangular flow field. The SST k - ω turbulence model is used in the turbulence computation. Both qualitative and quantitative analyses are conducted on the distribution of the flow field, temperature field, local Nusselt number, local pressure coefficient, average Nusselt number, and average pressure coefficient under various combination conditions. The findings indicate that when the suspension nozzle's flow field varies greatly, wall-jet velocity ratio is 0.1. A rise in Jet inclination angle is not helpful for the wall's suspension, and it has minimal effect on the flow field. The flow field is greatly influenced by separation space-slit width ratio. Larger separation space-slit width ratio values are advantageous for the wall's heat transmission but unfavorable for the wall's suspension. The flow field is most influenced by wall-jet velocity ratio. The wall's ability to convey heat is stronger the higher the wall-jet velocity ratio, but its ability to support weight falls.

5.
J Ethnopharmacol ; 331: 118288, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705426

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Xiaoer-Feire-Qing granules (XEFRQ) has been used to treat pyretic pulmonary syndrome (PPS) in children for many years. The function of the lungs is considered to be closely related to the large intestine in TCM. PURPOSE: We aimed to investigate the effects of XEFRQ on PPS and the underlying mechanisms via network pharmacology and animal experiments. METHODS: The TCMSP platform was used to identify the ingredients and potential targets of XEFRQ. The GeneCards, OMIM, and TTD databases were used to predict PPS-associated targets. Cytoscape 3.9.1 was employed to construct the protein-protein interaction network, and target prediction was performed by GO and KEGG analyses. For the animal experiment, a PPS model was constructed by three cycles of nasal drip of Streptococcus pneumoniae (STP; 0.5 mL/kg). The animals were randomly divided into the following four groups according to their weight (n = 10 rats per group): the blank group, the model group, the XEFRQ-L (16.3 g/kg) group, and the XEFRQ-H (56.6 g/kg) group. Rats in the blank group and the model group were given 0.5% CMC-Na by gavage. The general conditions of the rats were observed, and their food-intake, body weight, and body temperature were recorded for 14 days. After the intervention of 14 days, serum was collected to detect inflammatory cytokines (TNF-α, IL-1ß, and PGE2) and neurotransmitters (5-HT, SP, and VIP). H&E staining was used to observe the pathological morphology of lung and colon tissue. AQP3 expression was detected by Western blot. In addition, the gut microbiota in cecal content samples were analyzed by 16S rDNA high-throughput sequencing. RESULTS: Our network analysis revealed that XEFRQ may alleviate PPS injury by affecting the levels of inflammatory cytokines and neurotransmitters and mitigating STP-induced PPS.In vivo validation experiments revealed that XEFRQ improved STP-induced PPS and reduced the expression of inflammatory cytokines and neurotransmitters. Notably, XEFRQ significantly decreased the protein expression levels of AQP3, which was associated with dry stool. Our gut microbiota analysis revealed that the relative abundance of [Eubacterium]_ruminantium_group, Colidextribacter, Romboutsia, and Oscillibacter was decreased, which means XEFRQ exerts therapeutic effects against PPS associated with these bacteria. CONCLUSION: Our results demonstrate that XEFRQ alleviates PPS by affecting the lungs and intestines, further guiding its clinical application.


Subject(s)
Drugs, Chinese Herbal , Lung , Network Pharmacology , Rats, Sprague-Dawley , Streptococcus pneumoniae , Animals , Drugs, Chinese Herbal/pharmacology , Lung/drug effects , Lung/microbiology , Lung/pathology , Lung/metabolism , Male , Streptococcus pneumoniae/drug effects , Rats , Cytokines/metabolism , Disease Models, Animal , Protein Interaction Maps , Intestines/drug effects , Intestines/microbiology , Fever/drug therapy , Gastrointestinal Microbiome/drug effects , Lung Diseases/drug therapy , Lung Diseases/microbiology
6.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771245

ABSTRACT

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Subject(s)
Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Rest , Humans , Male , Female , Adult , Cerebrovascular Circulation/physiology , Reproducibility of Results , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Young Adult , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Psychomotor Performance/physiology , Circadian Rhythm/physiology , Arousal/physiology
7.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653778

ABSTRACT

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
8.
Opt Express ; 32(7): 11281-11295, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570979

ABSTRACT

We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.

9.
Opt Express ; 32(6): 9276-9286, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571165

ABSTRACT

All-inorganic halide perovskite quantum dots (QDs) have recently received much attention due to their excellent optoelectronic properties. And their emission properties still need to be improved for further applications. Here, we demonstrated a remarkable emission enhancement of the CsPbBr3 QDs based on an Ag nanoparticle-Ag film plasmonic coupling structure. Through precise control of the gap distance between Ag nanoparticle and Ag film, the localized surface plasmon resonance (LSPR) peak was tuned to match the emission wavelength of the CsPbBr3 QDs. We achieved a 30-fold fluorescence intensity enhancement and a lower lasing threshold, which is 25% of that of the CsPbBr3 QDs without plasmonic coupling structure. It is attributed to that the plasmonic coupling structure exhibits an extremely strong local electric field owing to the coupling between LSPR of Ag nanoparticle and surface plasmon polariton of Ag film. This work provides an effective way to enhance the optical emission of perovskite QDs and promotes the further exploration of on-chip light source.

10.
Talanta ; 274: 126081, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38613947

ABSTRACT

The development of efficient, accurate, and high-throughput technology for gut microbiota sensing holds great promise in the maintenance of health and the treatment of diseases. Herein, we developed a rapid fluorescent sensor array based on surface-engineered silver nanoparticles (AgNPs) and vancomycin-modified gold nanoclusters (AuNCs@Van) for gut microbiota sensing. By controlling the surface of AgNPs, the recognition ability of the sensor can be effectively improved. The sensor array was used to successfully discriminate six gut-derived bacteria, including probiotics, neutral, and pathogenic bacteria and even their mixtures. Significantly, the sensing system has also been successfully applied to classify healthy individuals and colorectal cancer (CRC) patients rapidly and accurately within 30 min, demonstrating its clinically relevant specificity.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Gold , Metal Nanoparticles , Silver , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/diagnosis , Humans , Silver/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Vancomycin/pharmacology , Surface Properties , Fluorescent Dyes/chemistry
11.
Article in English | MEDLINE | ID: mdl-38631538

ABSTRACT

Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.

12.
Environ Res ; 252(Pt 2): 118960, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636648

ABSTRACT

Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.


Subject(s)
Microplastics , Microplastics/toxicity , Animals , Soil Pollutants/toxicity , Biodegradable Plastics/toxicity , Oceans and Seas , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Soil/chemistry , Ecosystem
13.
iScience ; 27(4): 109545, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38617557

ABSTRACT

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

14.
Biomed Pharmacother ; 174: 116562, 2024 May.
Article in English | MEDLINE | ID: mdl-38626518

ABSTRACT

Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.


Subject(s)
Calcium-Binding Proteins , Cell Differentiation , Cell Proliferation , Down-Regulation , Rhabdomyosarcoma , Cell Differentiation/drug effects , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/metabolism , Animals , Down-Regulation/drug effects , Humans , Cell Line, Tumor , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Proliferation/drug effects , Mice , Xenograft Model Antitumor Assays , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Nude , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology
15.
Theriogenology ; 221: 25-30, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537318

ABSTRACT

The objectives of this study were to analyze the (1) effects of donor age and multiparity on development of in vitro fertilization (IVF) embryos after ovum pickup (OPU), (2) effects of repeated and consecutive OPU-IVF procedures on embryo development, and (3) embryo production from OPU-IVF in donors with differing embryo yields after multiple ovulation and embryo transfer technology (MOET) in Japanese Black cattle (Wagyu). Donors were pre-treated with low-dosage follicle-stimulating hormone (FSH; 200 IU total), and oocytes were collected via OPU and fertilized by IVF to generate blastocysts. The number of oocytes collected per OPU session per donor was lower in heifers (2-4 years old, 5.3 oocytes) than in primiparous and pluriparous cows (2-10 years old, 13.6-19.1 oocytes; P < 0.05). Rates of blastocyst development for oocytes from heifers (33.1%) were lower than for those from cows (2-10 years old, 44.1-54.3%; P < 0.05), and average blastocyst yield/OPU/animal was lower in heifers (3.7) than in 5-6 years old cows (10.1; P < 0.05). Donors undergoing five consecutive OPU-IVF sessions after low-dosage FSH showed similar oocyte retrieval (12.2-15.1 oocytes per OPU/animal), blastocyst development rates (35.6-45.0%), and embryo yield/OPU/animal (4.8-5.8; P > 0.05) across sessions. Additionally, embryo yield from OPU-IVF was significantly improved in animals with previous low embryo yield from MOET (5.9 vs. 2.6, respectively, P < 0.05). These results indicate that Wagyu cows with previous births can be more productive as OPU-IVF donors than heifers, and oocytes from donors undergoing to five consecutive OPU-IVF cycles are competent for embryo development without loss of embryo yield/OPU/animal. Moreover, OPU-IVF can be used for embryo production and breeding from all elite Japanese Black cattle, regardless of previous low embryo yield in routine MOET.


Subject(s)
Oocytes , Reproductive History , Cattle , Female , Animals , Fertilization in Vitro/veterinary , Oocyte Retrieval/veterinary , Oocyte Retrieval/methods , Follicle Stimulating Hormone/pharmacology , Ovum
16.
PLoS Biol ; 22(3): e3002240, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547242

ABSTRACT

MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.


Subject(s)
Cell Transformation, Neoplastic , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Histone Methyltransferases/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
17.
Medicine (Baltimore) ; 103(12): e37308, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518012

ABSTRACT

Disulfidptosis is a newly discovered cell death pattern that has been less studied in head and neck squamous carcinoma (HNSCC). Exploring the molecular features of different subtypes of HNSCC based on disulfidptosis-associated genes (DAGs) is important for HNSCC. In addition, immunotherapy plays a pivotal role in the treatment of HNSCC. Exploring the sensitivity of immunotherapies and developing predictive models is essential for HNSCC. We analyzed the expression and mutational status of DAGs in 790 HNSCC patients and correlated the dates with clinical prognosis. HNSCC patients were divided into 2 groups based on their DAG expression. The relationship between DAGs, risk genes, and the immune microenvironment was analyzed using the CIBERSORT algorithm. A disulfidptosis risk model was constructed based on 5 risk genes using the LASSO COX method. To facilitate the clinical applicability of the proposed risk model, we constructed column line plots and performed stem cell correlation analysis and antitumor drug sensitivity analysis. Two different disulfidptosis-associated clusters were identified using consistent unsupervised clustering analysis. Correlations between multilayer DAG alterations and clinical characteristics and prognosis were observed. Then, a well-performing disulfidptosis-associated risk model (DAG score) was developed to predict the prognosis of HNSCC patients. We divided patients into high-risk and low-risk groups based on the DAG score and found that patients in the low-risk group were more likely to survive than those in the high-risk group (P < .05). A high DAG score implies higher immune cell infiltration and increased mutational burden. Also, univariate and multivariate Cox regression analyses revealed that the DAG score was an independent prognostic predictor for patients with HNSCC. Subsequently, a highly accurate predictive model was developed to facilitate the clinical application of DAG scores, showing good predictive and calibration power. Overall, we present a comprehensive overview of the DAG profile in HNSCC and develop a new risk model for the therapeutic status and prognosis of patients with HNSCC. Our findings highlight the potential clinical significance of DAG and suggest that disulfidptosis may be a potential therapeutic target for patients with HNSCC.


Subject(s)
Head and Neck Neoplasms , Immunotherapy , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Prognosis , Algorithms , Head and Neck Neoplasms/genetics , Tumor Microenvironment
18.
J Agric Food Chem ; 72(12): 6226-6235, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38492240

ABSTRACT

The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.


Subject(s)
AMP-Activated Protein Kinases , Glucosides , Sleep Apnea, Obstructive , Humans , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Organelle Biogenesis , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Flavonoids/metabolism , Sleep Apnea, Obstructive/metabolism
19.
Biochem Genet ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536568

ABSTRACT

Cancer-associated fibroblasts (CAFs) are an important component of the stroma. Studies showed that CAFs were pivotally in glioma progression which have long been considered a promising therapeutic target. Therefore, the identification of prognostic CAF markers might facilitate the development of novel diagnostic and therapeutic approaches. A total of 1333 glioma samples were obtained from the TCGA and CGGA datasets. The EPIC, MCP-counter, and xCell algorithms were used to evaluate the relative proportion of CAFs in glioma. CAF markers were identified by the single-cell RNA-seq datasets (GSE141383) from the Tumor Immune Single-Cell Hub database. Unsupervised consensus clustering was used to divide the glioma patients into different distinct subgroups. The least absolute shrinkage and selection operator regression model was utilized to establish a CAF-related signature (CRS). Finally, the prognostic CAF markers were further validated in clinical specimens by RT‒qPCR. Combined single-cell RNA-seq analysis and differential expression analysis of samples with high and low proportions of CAFs revealed 23 prognostic CAF markers. By using unsupervised consensus clustering, glioma patients were divided into two distinct subtypes. Subsequently, based on 18 differentially expressed prognostic CAF markers between the two CAF subtypes, we developed and validated a new CRS model (including PCOLCE, TIMP1, and CLIC1). The nomogram and calibration curves indicated that the CRS was an accurate prognostic marker for glioma. In addition, patients in the high-CRS score group had higher immune infiltration and tumor mutation burden levels. Moreover, the CRS score had the potential to predict the response to immune checkpoint blockade (ICB) therapy and chemotherapy. Finally, the expression profiles of three CAF markers were verified by RT‒qPCR. In general, our study classified glioma patients into distinct subgroups based on CAF markers, which will facilitate the development of individualized therapy. We also provided insights into the role of the CRS in predicting the response to ICB and chemotherapy in glioma patients.

20.
Neuroreport ; 35(6): 366-373, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526949

ABSTRACT

Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.


Subject(s)
Parkinson Disease , White Matter , Humans , Diffusion Tensor Imaging/methods , Corpus Callosum/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Cross-Sectional Studies , Semantics , Brain/diagnostic imaging , White Matter/diagnostic imaging , Cerebellum , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL
...