Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(17): 11300-11310, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38637969

ABSTRACT

The fast-charging performance of conventional lithium-ion batteries (LIBs) is determined by the working temperature. LIBs may fail to work under harsh conditions, especially in the low-temperature range of the local environment or in the high-temperature circumstances resulting from the release of substantial Joule heating in the short term. Constructing a thermal engineering framework for thermal regulation and maintaining the battery running at an appropriate temperature range are feasible strategies for developing temperature-tolerant, fast-charging LIBs. In this work, we prepare phase change nanocapsules as a thermal regulating layer on the cell surface. The polyurea shells of the nanocapsules are decorated with polyaniline, where the molecular vibration of polyaniline is enhanced under solar irradiation, enabling light-to-heat conversion that achieves an effective temperature increment at low temperatures. Based on the large latent heat storage capability of the n-octadecane core in the nanocapsules, the thermal regulating layer is sufficient to modulate strong heat release when operating LIBs at a high current rate, which efficiently prevents strong side reactions at high temperatures or even the occurrence of thermal runaway. This work highlights the promise of optimizing the operating temperature with a thermal regulator to ensure the safety and performance stability of fast-charging LIBs.

2.
ChemSusChem ; 17(7): e202301971, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38385588

ABSTRACT

For the drawbacks of phase change materials such as poor shape stability and weak solar-thermal conversion ability, a rotunda-shaped carboxymethylcellulose/carbon nanotube aerogel (CA) with three-dimensional network was constructed by freeze casting with a special mold, and then impregnated with polyethylene glycol (PEG) in this work. The PEG/CA had an enthalpy of 183.21 J/g, and a thermal conductivity of 0.324 W m-1 K-1, which was 57 % higher than the pure PEG. The ability of PEG/CA to convert solar energy to thermal energy was a positive correlation between the inclusion of CNTs and the composite material's thermal conductivity. Under simulated sunlight, its solar-thermal conversion efficiency reaches 94.41 %, and after 10 min of irradiation, the surface temperature can reach 65 °C and the internal temperature can reach 44.67 °C. This rotunda-shaped PEG/CA is promising for the efficient use of renewable solar energy due to its strong solar-thermal conversion and thermal storage capabilities.

3.
Polymers (Basel) ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399922

ABSTRACT

In the field of high-frequency communications devices, there is an urgent need to develop high-performance copper clad laminates (CCLs) with low dielectric loss (Df) plus good flame retardancy and thermal stability. The hydrocarbon resin styrene-butadiene block copolymer (PSB) was modified with the flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/polyhedral oligomeric silsesquioxanes (DOPO-POSS) to meet the demands of high-frequency and high-speed applications. The resulting DOPO-POSS-modified PSB was used as the resin matrix along with other additives to fabricate PSB/DOPO-POSS laminates. At a high-frequency of 10 GHz, the laminates containing 20 wt.% of DOPO-POSS and with a thickness of 0.09 mm exhibited a Df of 0.00328, which is much lower compared with the commercial PSB/PX-200 composite (Df: 0.00498) and the PSB without flame retardancy (Df: 0.00453). Afterwards, glass fiber cloth (GF) was used as a reinforcing material to manufacture GF-PSB/DOPO-POSS composite laminates with a thickness of 0.25 mm. The flame retardancy of GF-PSB/DOPO-POSS composite laminate reached vertical burning (UL-94) V-1 grade, and GF-PSB/DOPO-POSS exhibited higher thermal and dynamic mechanical properties than GF-PSB/PX-200. The results of a limited oxygen index (LOI) and self-extinguishing time tests also demonstrated the superior flame-retardant performance of DOPO-POSS compared with PX-200. The investigation indicates that GF-PSB/DOPO-POSS composite laminates have significant potential for use in fabricating a printed circuit board (PCB) for high-frequency and high-speed applications.

4.
Nat Commun ; 15(1): 1634, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395918

ABSTRACT

Lithium- and manganese-rich layered oxide cathode materials have attracted extensive interest because of their high energy density. However, the rapid capacity fading and serve voltage decay over cycling make the waste management and recycling of key components indispensable. Herein, we report a facile concentrated solar radiation strategy for the direct recycling of Lithium- and manganese-rich cathodes, which enables the recovery of capacity and effectively improves its electrochemical stability. The phase change from layered to spinel on the particle surface and metastable state structure of cycled material provides the precondition for photocatalytic reaction and thermal reconstruction during concentrated solar radiation processing. The inducement of partial inverse spinel phase is identified after concentrated solar radiation treatment, which strongly enhances the redox activity of transition metal cations and oxygen anion, and reversibility of lattice structure. This study sheds new light on the reparation of spent cathode materials and designing high-performance compositions to mitigate structural degradation.

5.
Adv Mater ; 36(11): e2309723, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091525

ABSTRACT

Solid-solid phase change materials (SSPCMs) are considered among the most promising candidates for thermal energy storage and management. However, the application of SSPCMs is consistently hindered by the canonical trade-off between high TES capacity and mechanical robustness. In addition, they suffer from poor recyclability due to chemical cross-linking. Herein, a straightforward but effective strategy for fabricating supramolecular SSPCMs with high latent heat and mechanical strength is proposed. The supramolecular polymer employs multiple H-bonding interactions as robust physical cross-links. This enables SSPCM with a high enthalpy of phase transition (142.5 J g-1 ), strong mechanical strength (36.9 MPa), and sound shape stability (maintaining shape integrity at 120 °C) even with a high content of phase change component (97 wt%). When SSPCM is utilized to regulate the operating temperature of lithium-ion batteries, it significantly diminishes the battery working temperature by 23 °C at a discharge rate of 3 C. The robust thermal management capability enabled through solid-solid phase change provides practical opportunities for applications in fast discharging and high-power batteries. Overall, this study presents a feasible strategy for designing linear SSPCMs with high latent heat and exceptional mechanical strength for thermal management.

6.
Foodborne Pathog Dis ; 21(1): 61-67, 2024 01.
Article in English | MEDLINE | ID: mdl-37856143

ABSTRACT

Cronobacter sakazakii is an opportunistic foodborne pathogen that mainly infects infants and immunocompromised people, with a high mortality rate. However, the efficient transformation method of this bacterium has not been systematically reported. In this study, we developed a fast and efficient transformation method for C. sakazakii by cold sucrose treatment. Compared with CaCl2 or glycerol treatment, the transformation efficiency of this method is significantly high when bacteria were cultured overnight at 42°C before cold sucrose treatment. Furthermore, applying this method, we successfully knocked out the pppA gene by direct electroporation. Collectively, our study provides a simple, time-saving, and efficient method for competent cell preparation of C. sakazakii, which is conducive to the further research of C. sakazakii.


Subject(s)
Cronobacter sakazakii , Cronobacter , Infant , Humans , Cronobacter sakazakii/genetics , Immunocompromised Host , Sucrose
7.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984012

ABSTRACT

The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.

8.
Chem Sci ; 13(44): 13160-13171, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36425504

ABSTRACT

Metal-organic frameworks (MOFs) provide opportunities for the design of high-efficiency catalysts attributed to their high compositional and structural tunability. Meanwhile, the huge number of MOFs poses a great challenge to experimental-intensive development of high-performance functional applications. By taking the computationally feasible and structurally representative trigonal prismatic secondary building units (SBUs) of MOFs as the entry point, we introduce a descriptor-based approach for designing high-performance MOFs for the oxygen evolution reaction (OER). The electrostatic potential-derived charge (ESPC) is identified as a robust and universal OER performance descriptor of MOFs, showing a distinct linear relationship with the onset potentials of OER elemental steps. Importantly, we establish an ESPC-based physical pattern of active site-intermediate binding strength, which interprets the rationality of ESPC as an OER performance descriptor. We further reveal that the SBUs with Ni/Cu as active site atoms while Mn/Fe/Co/Ni as spectator atoms have excellent OER activity through the variation pattern of ESPC along with metal composition. The universal correlation between ESPC and OER activity provides a rational rule for designing high-performance MOF-based OER electrocatalysts and can be easily extended to design functional MOFs for a rich variety of catalytic applications.

9.
Math Biosci Eng ; 19(9): 9697-9708, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35942778

ABSTRACT

The problem of minimizing makespan (maximum completion time) on uniform machines with restricted assignment is considered. The machines differ in their speeds and functionalities. Each job has a set of machines to which it can be assigned, called its processing set. The goal is to finish the jobs as soon as possible. There exist 4/3-approximation algorithms for the cases of inclusive and tree-hierarchical assignment restrictions, under an assumption that machines with higher capabilities also run at higher speeds. We eliminate the assumption and present algorithms with approximation ratios 2 and 4/3 for both cases.


Subject(s)
Algorithms
11.
Math Biosci Eng ; 19(7): 7337-7348, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35730309

ABSTRACT

This paper studies the Pareto scheduling problem of minimizing total weighted completion time and maximum cost on a single machine. It is known that the problem is strongly NP-hard. Algorithms with running time $ O(n^3) $ are presented for the following cases: arbitrary processing times, equal release dates and equal weights; equal processing times, arbitrary release dates and equal weights; equal processing times, equal release dates and arbitrary weights.


Subject(s)
Algorithms , Time
12.
Macromol Rapid Commun ; 43(13): e2100781, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34935237

ABSTRACT

Crosslinked polyurethane with excellent mechanical property, solvent resistance, and transparency has become one of the most widely used materials. However, the presence of chemical crosslinks makes it difficult to be reprocessed once molded, which largely restricts its recycling and reusing, resulting in the serious waste problems. Therefore, it is of great significance to prepare a new type of crosslinked polyurethane with reprocessing function. In this work, a novel reprocessable polyurethane (DOPU) based on reversible dibutanone oxime-carbamate bonds is facilely prepared. The gel fraction of DOPUs is all higher than 95%, endowing it with excellent solvent resistance. Meanwhile, the visible light transmittance of DOPUs can reach up to 97.48%. After four thermal recycles, the tensile strength and elongation at break of recycled DOPUs can still remain at 3.21 MPa and 219.09%, respectively. Importantly, the synthesized DOPUs exhibit excellent elastic shape memory and permanent shape reconstruction properties under thermal stimulation. The dibutanone oxime-carbamate bonds can also be degraded under UV irradiation, making this material easily degradable. Hence, this material has potential applications in coatings, elastomers, and some other fields.


Subject(s)
Oximes , Polyurethanes , Carbamates , Elastomers/chemistry , Polyurethanes/chemistry , Solvents
13.
BMC Neurol ; 21(1): 373, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34610800

ABSTRACT

BACKGROUND: The prognostic value of serum bilirubin in stroke is controversial, since bilirubin has both neuroprotective and neurotoxic properties. We aimed to investigate the association between serum bilirubin, including total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) and poor functional outcomes in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). METHODS: All patients with AIS or TIA were recruited from the Third China National Stroke Registry. The poor functional outcomes included modified Rankin Scale (mRS) score 2-6 and 3-6 at 3 months and 1 year. Multivariable logistic regression was used to investigate the associations of TBIL, DBIL, and IBIL with poor functional outcomes. RESULTS: Among 11,121 enrolled patients, the median (interquartile range) of TBIL, DBIL, and IBIL was 13.30 (9.90-17.70), 3.80 (2.70-5.30), and 9.30 (6.70-12.80) µmol/L. After adjustment for conventional confounding factors, patients in the highest TBIL quartile had the highest proportion of mRS score 2-6 at 3 months (odds ratio [OR], 1.37; 95 % confidence interval [CI], 1.19-1.59) and 1 year (OR, 1.31; 95 % CI, 1.13-1.52), and mRS score 3-6 at 3 months (OR, 1.33; 95 % CI, 1.11-1.59) and 1 year (OR, 1.28; 95 % CI, 1.07-1.53), when compared to patients in the lowest TBIL quartile. Similar results were observed for DBIL and IBIL. We also found J-shaped associations between serum bilirubin levels and each outcome. CONCLUSIONS: Elevated levels of serum bilirubin were significantly associated with poor functional outcomes in patients with AIS or TIA at 3 months and 1 year.


Subject(s)
Brain Ischemia , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Bilirubin , Humans , Ischemic Attack, Transient/epidemiology , Stroke/diagnosis
14.
ACS Appl Mater Interfaces ; 13(39): 46518-46525, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34554721

ABSTRACT

High energy density lithium-ion batteries with preferable cycling stability are critical for the development of all-electric vehicles. Silicon (Si) has demonstrated a remarkable potential for application as anode materials due to its superior capacity performance and worldwide abundance. However, Si intrinsically undergoes substantial volume fluctuation during repeated lithiation/delithiation processes, which pulverizes the Si particles and undermines the integrity of the electrode structures, thus resulting in frustrating cycling stability. We developed a polymer binder with a highly stretchable and elastic network structure that can accommodate volume variation of Si. This was realized by an in situ cross-linking of polyacrylic acid (PAA) with isocyanate-terminated polyurethane oligomers that consist of polyethylene glycol (PEG) chains and 2-ureido-4-pyrimidinone (UPy) moieties through the reaction between isocyanate and carboxyl during the electrode preparation process. In this binder network, PAA could strongly adhere to the Si particles by forming hydrogen bonding with the surface hydroxyl groups. The PEG chains induce the flexibility of the polymer network, while the UPy moieties endow the polymer network with desirable mechanical strength through the formation of reversible and strong quadruple H-bonding cross-linkers. This binder not only can sufficiently accommodate the volume change of Si but can also provide a strong mechanical support to effectively sustain the integrity for the Si anode, consequently enhancing cycle stability and rate performance.

15.
Front Chem ; 8: 484, 2020.
Article in English | MEDLINE | ID: mdl-32637395

ABSTRACT

The Li-S battery is a promising next-generation technology due to its high theoretical energy density (2600 Wh kg-1) and low active material cost. However, poor cycling stability and coulombic efficiency caused by polysulfide dissolution have proven to be major obstacles for a practical Li-S battery implementation. In this work, we develop a novel strategy to suppress polysulfide dissolution using hydrofluoroethers (HFEs) with bi-functional, amphiphlic surfactant-like design: a polar lithiophilic "head" attached to a fluorinated lithiophobic "tail." A unique solvation mechanism is proposed for these solvents whereby dissociated lithium ions are readily coordinated with lithiophilic "head" to induce self-assembly into micelle-like complex structures. Complex formation is verified experimentally by changing the additive structure and concentration using small angle X-ray scattering (SAXS). These HFE-based electrolytes are found to prevent polysulfide dissolution and to have excellent chemical compatibility with lithium metal: Li||Cu stripping/plating tests reveal high coulombic efficiency (>99.5%), modest polarization, and smooth surface morphology of the uniformly deposited lithium. Li-S cells are demonstrated with 1395 mAh g-1 initial capacity and 71.9% retention over 100 cycles at >99.5% efficiency-evidence that the micelle structure of the amphiphilic additives in HFEs can prohibit polysulfide dissolution while enabling facile Li+ transport and anode passivation.

16.
J Hazard Mater ; 320: 495-503, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27591682

ABSTRACT

A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field.


Subject(s)
Diatomaceous Earth/chemistry , Magnesium Oxide/chemistry , Nanostructures/chemistry , Tetracycline/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Filtration , Membranes, Artificial , Static Electricity
17.
Materials (Basel) ; 9(5)2016 May 12.
Article in English | MEDLINE | ID: mdl-28773486

ABSTRACT

In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L-1 (pH, 3.8-9.6). The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L-1, current density of 1 mA·cm-2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

18.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 7): o1523, 2009 Jun 06.
Article in English | MEDLINE | ID: mdl-21582814

ABSTRACT

The title compound, C(15)H(10)O(4)·H(2)O, also known as alizarin 1-methyl ether monohydrate, was isolated from Morinda officinalis How. The anthraquinone ring system is almost planar, the dihedral angle between the two outer benzene rings being 3.07 (4)°. In the crystal structure, O-H⋯O hydrogen bonds link the organic mol-ecules and the water mol-ecules, forming a three-dimensional network.

SELECTION OF CITATIONS
SEARCH DETAIL
...