Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Chem Sci ; 15(19): 7010-7033, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756795

ABSTRACT

The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.

2.
Nanomaterials (Basel) ; 14(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786798

ABSTRACT

Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm2, and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al2O3 crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20-30 µm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.

3.
J Mater Chem B ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809058

ABSTRACT

Rapid and sensitive detection of food-borne bacteria has remained challenging over the past few decades. We propose a surface-enhanced Raman scattering sensing strategy based on a novel bioinspired surface-enhanced Raman scattering substrate, which can directly detect dye molecular residues and food-borne pathogen microorganisms in the environment. The surface-enhanced Raman scattering platform consists of a natural diatomite microporous array decorated with a metal-phenolic network that enables the in situ reduction of gold nanoparticles. The as-prepared nanocomposites display excellent surface-enhanced Raman scattering activity with the lowest limit of detection and the maximum Raman enhancement factor of dye molecules up to 10-11 M and 1.18 × 107, respectively. For food-borne bacterial detection, a diatomite microporous array decorated with a metal polyphenol network and gold nanoparticle-based surface-enhanced Raman scattering analysis is capable of distinguishing the biochemical fingerprint information of Staphylococcus aureus and Escherichia coli, indicating the great potential for strain identification.

4.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38710124

ABSTRACT

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Subject(s)
Anti-Bacterial Agents , Chitosan , Citric Acid , Escherichia coli , Gels , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gels/chemistry , Chitosan/chemistry , Citric Acid/chemistry , Biomass , Hydrophobic and Hydrophilic Interactions , Porosity , Phytic Acid/chemistry , Pectins/chemistry , Cross-Linking Reagents/chemistry , Microbial Sensitivity Tests , Surface Properties , Particle Size , Temperature
5.
Article in English | MEDLINE | ID: mdl-38821173

ABSTRACT

Heart failure refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of heart failure. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. PGAM5, a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of heart failure, thereby providing a theoretical basis for future in-depth research.

6.
Biol Pharm Bull ; 47(5): 955-964, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38644204

ABSTRACT

The occurrence of in-stent restenosis (ISR) poses a significant challenge for percutaneous coronary intervention (PCI). Thus, the promotion of vascular reendothelialization is essential to inhibit endothelial proliferation. In this study, we clarified the mechanism by which Detoxification and Activating Blood Circulation Decoction (DABCD) promotes vascular reendothelialization to avoid ISR by miRNA-126-mediated modulation of the vascular endothelial growth factor (VEGF) signaling pathway. A rat model of post-PCI restenosis was established by balloon injury. The injured aortic segment was collected 14 and 28 d after model establishment. Our findings indicate that on the 14th and 28th days following balloon injury, DABCD reduced intimal hyperplasia and inflammation and promoted vascular reendothelialization. Additionally, DABCD markedly increased nitric oxide (NO) expression and significantly decreased ET-1 production in rat serum. DABCD also increased the mRNA level of endothelial nitric oxide synthase (eNOS) and the protein expression of VEGF, p-Akt, and p-extracellular signal-regulated kinase (ERK)1/2 in vascular tissue. Unexpectedly, the expression of miR-126a-5p mRNA was significantly lower in the aortic tissue of balloon-injured rats than in the aortic tissue of control rats, and higher miR-126a-5p levels were observed in the DABCD groups. The results of this study indicated that the vascular reendothelialization effect of DABCD on arterial intimal injury is associated with the inhibition of neointimal formation and the enhancement of vascular endothelial activity. More specifically, the effects of DABCD were mediated, at least in part, through miR-126-mediated VEGF signaling pathway activation.


Subject(s)
MicroRNAs , Nitric Oxide Synthase Type III , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Coronary Restenosis/metabolism , Aorta/drug effects , Aorta/pathology , Aorta/metabolism
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542316

ABSTRACT

Nardostachys jatamansi is widely used as a traditional medicine in Asian countries. Numerous recent studies have reported the biological activities of its secondary metabolites and extracts. In this study, a total of 14 components were isolated, including cycloolivil and 2-(3'-hydroxy-5'-ethoxyphenyl)-3-hydroxylmethyl-7-methoxy-2,3-dihydrobenzofuran-5-carboxylic acid, which were first discovered in N. jatamansi. The isolated compounds were investigated for their anti-inflammatory effects on HaCaT keratinocytes and their potential to alleviate skin inflammation. The results of the screening revealed that cycloolivil and 4ß-hydroxy-8ß-methoxy-10-methylene-2,9-dioxatricyclo[4.3.1.03,7]decane reduced the production of inflammatory cytokines induced by TNF-α/IFN-γ, such as IL-6, IL-8, and RANTES, in keratinocytes. This study focused on exploring the biological effects of cycloolivil, and the results suggested that cycloolivil inhibits the expression of COX-2 proteins. Further mechanistic evaluations confirmed that the anti-inflammatory effects of cycloolivil were mediated by blockage of the NF-κB and JAK/STAT signaling pathways. These results suggest that cycloolivil isolated from N. jatamansi could be used to treat skin inflammatory diseases.


Subject(s)
NF-kappa B , Nardostachys , Phenols , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nardostachys/metabolism , Interferon-gamma/metabolism , Keratinocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
8.
Water Res ; 255: 121483, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508039

ABSTRACT

Fly ash (FA) and eggshells (ES) are common solid wastes with significant potential for the recovery of phosphorus from water. This study focuses on synthesizing a low-cost and environmental-friendly phosphate adsorbent called eggshell-fly ash geopolymer composite (EFG) using eggshells instead of chemicals. The CaO obtained from the high-temperature pyrolysis of eggshells provides active sites for phosphate adsorption, and CO2 serves as a pore-forming agent. The phosphate adsorption performance of EFG varied with the eggshell-fly ash ratios and achieved a maximum of 49.92 mg P/g at an eggshell-fly ash ratio of 40 %. The adsorption process was well described by the pseudo-second-order model and the Langmuir model. EFG also exhibited a good regeneration performance through six-cycle experiments and achieved the highest phosphate desorption at pH 4.0. The results of the column experiment showed that EFG can be used as a filter media for phosphorus removal in a real-scale application with low cost. Soil burial test indicated saturated EFG has a good phosphate slow-release performance (maintained for up to 60 days). Overall, EFG has demonstrated to be a promising adsorbent for phosphorus recovery.

9.
Clin Ophthalmol ; 18: 799-807, 2024.
Article in English | MEDLINE | ID: mdl-38495679

ABSTRACT

Purpose: To investigate the impact of vergence dysfunction on myopia progression in children with Defocus incorporated multiple segments (DIMS) spectacle lenses. Patients and Methods: We retrospectively enrolled children prescribed DIMS spectacle lenses to slow myopic progression. Baseline vergence dysfunction was determined according to phoria at distance and near. Axial length (AL) measurement and cycloplegic subjective refraction were performed before fitting the lenses and at six-month and one-year follow-ups. The six-month and one-year AL and spherical equivalent (SE) change from baseline were calculated and compared in subgroups stratified with the type of vergence dysfunction. Results: Two hundred and ninety-two myopic children were included. Significant AL elongation and SE progression were observed at six months and one year (P < 0.05 for all comparisons). Multiple regression demonstrated that AL elongation at six months (P < 0.001) and one year (P < 0.001) was negatively correlated with age, and SE progression at six months was associated with age (P = 0.002). The AL elongation at six months in children with convergence excess was significantly greater than in normal myopic subjects (P = 0.011) and subjects with convergence insufficiency (P = 0.008), divergence excess (P = 0.007), divergence insufficiency (P = 0.024) and basic esophoria (P = 0.048) at six months. Conclusion: The present research demonstrated that vergence dysfunction influences myopia progression for myopic children with DIMS, and the children with convergence excess suffer from the greatest myopia progression among different types of vergence dysfunction.

10.
Oncogene ; 43(18): 1386-1396, 2024 May.
Article in English | MEDLINE | ID: mdl-38467852

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Down-Regulation , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Neovascularization, Pathologic , Sp1 Transcription Factor , Vascular Endothelial Growth Factor A , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/drug therapy , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/blood supply , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Line, Tumor , Animals , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Indazoles/pharmacology , Indazoles/therapeutic use , DNA Methyltransferase 3A/metabolism , Sulfonamides/pharmacology , Mice , Ubiquitin/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Drug Resistance, Neoplasm/genetics , Promoter Regions, Genetic , Female , Male , Angiogenesis
11.
Connect Tissue Res ; 65(2): 102-116, 2024 03.
Article in English | MEDLINE | ID: mdl-38493368

ABSTRACT

PURPOSE: Traditionally, the epidural fat (EF) is known as a physical buffer for the dural sac against the force and a lubricant facilitating the relative motion of the latter on the osseous spine. Along with the development of the studies on EF, controversies still exist on vital questions, such as the underlying mechanism of the spinal epidural lipomatosis. Meanwhile, the scattered and fragmented researches hinder the global insight into the seemingly dispensable tissue. METHODS: Herein, we reviewed literature on the EF and its derivatives to elucidate the dynamic change and complex function of EF in the local milieu, especially at the pathophysiological conditions. We start with an introduction to EF and the current pathogenic landscape, emphasizing the interlink between the EF and adjacent structures. We generally categorize the major pathological changes of the EF into hypertrophy, atrophy, and inflammation. RESULTS AND CONCLUSIONS: It is acknowledged that not only the EF (or its cellular components) may be influenced by various endogenic/exogenic and focal/systematic stimuli, but the adjacent structures can also in turn be affected by the EF, which may be a hidden pathogenic clue for specific spinal disease. Meanwhile, the unrevealed sections, which are also the directions the future research, are proposed according to the objective result and rational inference. Further effort should be taken to reveal the underlying mechanism and develop novel therapeutic pathways for the relevant diseases.


Subject(s)
Epidural Space , Lipomatosis , Humans , Epidural Space/pathology , Magnetic Resonance Imaging/methods , Lipomatosis/pathology , Bone and Bones/pathology
12.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473792

ABSTRACT

Lindera erythrocarpa, a flowering plant native to eastern Asia, has been reported to have neuroprotective activity. However, reports on the specific bioactive compounds in L. erythrocarpa are finite. The aim of this study was to investigate the anti-neuroinflammatory and neuroprotective effects of the compounds isolated from L. erythrocarpa. Dihydropashanone, a compound isolated from L. erythrocarpa extract, was found to have protected mouse hippocampus HT22 cells from glutamate-induced cell death. The antioxidant and anti-inflammatory properties of dihydropashanone in mouse microglial BV2 and HT22 cells were explored in this study. The results reveal that dihydropashanone inhibits lipopolysaccharide-induced inflammatory response and suppresses the activation of nuclear factor (NF)-κB in BV2 cells. In addition, dihydropashanone reduced the buildup of reactive oxygen species in HT22 cells and induced activation of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway in BV2 and HT22 cells. Our results suggest that dihydropashanone reduces neuroinflammation by decreasing NF-κB activation in microglia cells and protects neurons from oxidative stress via the activation of the Nrf2/HO-1 pathway. Thus, our data suggest that dihydropashanone offers a broad range of applications in the treatment of neurodegenerative illnesses.


Subject(s)
Lindera , Neurodegenerative Diseases , Mice , Animals , Lindera/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
13.
J Bone Miner Metab ; 42(2): 242-252, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498197

ABSTRACT

INTRODUCTION: This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS: This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS: There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (ß) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION: In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.


Subject(s)
Benzoates , Bone Diseases, Metabolic , Insecticides , Phenyl Ethers , Pyrethrins , Adult , Humans , Middle Aged , Pyrethrins/adverse effects , Pyrethrins/analysis , Pyrethrins/metabolism , Insecticides/adverse effects , Insecticides/analysis , Insecticides/metabolism , Nutrition Surveys , Cross-Sectional Studies , Bone Density , Bayes Theorem , Environmental Exposure/adverse effects , Bone Diseases, Metabolic/chemically induced , Bone Diseases, Metabolic/epidemiology
14.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Article in English | MEDLINE | ID: mdl-38447978

ABSTRACT

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Subject(s)
Myocytes, Cardiac , Quercetin , Sirtuins , Quercetin/pharmacology , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Sirtuins/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , DNA-Activated Protein Kinase/metabolism , Male , Mice, Inbred C57BL , Mitophagy/drug effects
15.
RSC Adv ; 14(12): 8445-8453, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38476179

ABSTRACT

Fenton catalytic medicine that catalyzes the production of ·OH without external energy input or oxygen as a substrate has reshaped the landscape of conventional cancer therapy in recent decades, yet potential biosafety concerns caused by non-safety-approved components restrict their clinical translation from the bench to the bedside. Herein, to overcome this dilemma, we elaborately utilizate safety-approved hetastarch, which has been extensively employed in the clinic as a plasma substitute, as a stabilizer participating in the copper chloride-initiated polymerization of pyrrole monomer before loading it with DOX. The constructed DOX-loaded hetastarch-doped Cu-based polypyrrole (HES@CuP-D) catalyzes the excess H2O2 in tumor cells to ·OH through a Cu+-mediated Fenton-like reaction, which not only causes oxidative damage to tumor cells but also leads to the structural collapse and DOX release. Additionally, HES@CuP-D together with laser irradiation reinforces tumor killing efficiency by hyperthermia-enhanced catalytic activity and -accelerated drug release. As a result, the developed HES@CuP-D provides a promising strategy for Fenton catalytic therapy with negligible toxicity to the body.

16.
J Am Chem Soc ; 146(11): 7295-7304, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38364093

ABSTRACT

All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.

17.
Sci Total Environ ; 918: 170591, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309345

ABSTRACT

Microplastics (MPs), a new type of pollutant, have attracted much attention worldwide. MPs are often complexed with other pollutants such as heavy metals, resulting in combined toxicity to organisms in the environment. Studies on the combined toxicity of MPs and heavy metals have usually focused on the marine, while on the freshwater are lacking. In order to understand the combined toxic effects of MPs and heavy metals in the freshwater, five typical MPs (PVC, PE, PP, PS, PET) were selected to investigate the adsorption characteristics of MPs to Pb2+ before and after the MPs aging by ultraviolet (UV) irradiation through static adsorption tests. The results showed that UV aging enhanced adsorption of Pb2+ by MPs. It is noteworthy that MPs-PET had the highest adsorption capacity for Pb2+, and the interaction between MPs-PET and Pb2+ was the strongest. We specifically selected MPs-PET to study its combined toxicity with Pb2+ to Chlorella pyrenoidosa. In the combined toxicity test, MPs-PET and Pb2+ had significant toxic effects on Chlorella pyrenoidosa in the individual exposure, and the toxicity of individual Pb2+ exposure was greater than that of individual MPs-PET exposure. In the combined exposure, when MPs-PET and Pb2+ without adsorption (MPs-PET/Pb2+), MPs-PET and Pb2+ had a synergistic effect, which would produce strong physical and chemical stress on Chlorella pyrenoidosa simultaneously, and the toxic effect was the most significant. After the adsorption of MPs-PET and Pb2+ (MPs-PET@Pb2+), the concentration and activity of Pb2+ decreased due to the adsorption and fixation of MPs-PET, and the chemical stress on Chlorella pyrenoidosa was reduced, but the physical stress of MPs-PET still existed and posed a serious threat to the survival of Chlorella pyrenoidosa. This study has provided a theoretical basis for further assessment of the potential environmental risks of MPs in combination with other pollutants such as heavy metals.


Subject(s)
Chlorella , Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Microplastics/toxicity , Plastics/toxicity , Lead/toxicity , Water Pollutants, Chemical/analysis , Metals, Heavy/toxicity , Metals, Heavy/chemistry , Adsorption
18.
Adv Healthc Mater ; 13(14): e2303248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38272459

ABSTRACT

Biomineral crystals form complex nonequilibrium structures based on the multistep nucleation theory, via transient amorphous precursors. However, the intricate nature of the biological system results in the inconsistent frequency of nucleation and crystallization, which making it problematic to obtain homogeneous nanocrystals, limits their application in biomedicine. Here, it is reported that homogeneous nanocrystals of photoinduced oriented crystallization with protein coronas are based on intracellular liquid-liquid phase separation for in situ analysis and mapping of surface-enhanced Raman spectroscopy (SERS). Near-infrared light promotes the formation of intracellular dense phases, accelerates the nucleation of gold atoms at secondary structure sites of proteins, and promotes the growth of crystals. Homogeneous gold nanocrystals with stable SERS signals can be used to analysis different cell cycles and acquire in situ molecular information of metastatic tumor cells. Of note are tag molecule is embedded in protein coronas of gold nanocrystals to enable the mapping of patient tumor tissue samples and the portable recognition of tumor cells. Thus, this study proposes a new strategy for biomineralization of intracellular homogeneous gold nanocrystals and its potential application.


Subject(s)
Crystallization , Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Humans , Gold/chemistry , Crystallization/methods , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Nanoparticles/chemistry , Cell Line, Tumor , Protein Corona/chemistry , Phase Separation
19.
Appl Opt ; 63(3): 662-667, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294377

ABSTRACT

Because chemical gas is sensitive to absorption in the 2 µm band, and 2 µm matches the absorption band of the remote sensing material, many remote sensors and optical sensors are designed to operate in the 2 µm wavelength region. In this paper, we designed an integrated 3 dB power splitter centered at 2 µm. The study of this device is built on a silicon-on-insulator (SOI) platform. We introduced a subwavelength grating (SWG) to improve the performance of the device. We used the three-dimensional finite-difference time-domain (3D FDTD) method to analyze the effect of the structure on the power splitter. The insertion loss (IL) of the fundamental TE mode is only 0.04 dB at 2 µm and its bandwidth of IL <0.45d B is 940 nm (1570-2510 nm). It is suitable for multidomain and all-band photonic integrated circuits at 2 µm.

20.
J Ethnopharmacol ; 324: 117813, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38281691

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fatsia japonica is a traditional medicine used to treat various diseases, including inflammation-related disorders. However, its antineuroinflammatory and neuroprotective effects remain unclear. AIM OF THE STUDY: We aimed to evaluate the anti-neuroinflammatory and neuroprotective effects of F. japonica extract to identify the underlying mechanisms. MATERIALS AND METHODS: The components of F. japonica extract were profiled using ultra-high-performance liquid chromatography-mass spectrometry. The effects of F. japonica extract were investigated in BV2 microglia and HT22 hippocampal cells. Furthermore, in vivo effects of F. japonica extract were assessed using zebrafish models treated with H2O2 and LPS to evaluate the effects of in vivo. RESULTS: We identified 27 compounds in the F. japonica extract. F. japonica extract demonstrated anti-inflammatory properties by suppressing LPS-induced inflammatory responses in both BV2 cells and zebrafish, along with inhibiting the activation of the nuclear factor (NF)-κB (p65) pathway. The protective effects of this extract were also observed on glutamate-treated HT22 cells and in H2O2-induced zebrafish. Furthermore, F. japonica extract upregulated nuclear factor E2-related (Nrf) 2/heme oxygenase (HO)-1 expression in BV2 and HT22 cells. CONCLUSIONS: F. japonica extract exerted anti-neuroinflammatory and neuroprotective effects through Nrf2/HO-1 and the NF-κB pathway.


Subject(s)
Neuroprotective Agents , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Zebrafish , Antioxidants/pharmacology , Antioxidants/metabolism , Lipopolysaccharides/pharmacology , Hydrogen Peroxide/metabolism , Cell Line , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Microglia , Heme Oxygenase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...