Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Br J Clin Pharmacol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845212

ABSTRACT

AIMS: Although there are various model-based approaches to individualized vancomycin (VCM) administration, few have been reported for adult patients with periprosthetic joint infection (PJI). This work attempted to develop a machine learning (ML)-based model for predicting VCM trough concentration in adult PJI patients. METHODS: The dataset of 287 VCM trough concentrations from 130 adult PJI patients was split into a training set (229) and a testing set (58) at a ratio of 8:2, and an independent external 32 concentrations were collected as a validation set. A total of 13 covariates and the target variable (VCM trough concentration) were included in the dataset. A covariate model was respectively constructed by support vector regression, random forest regression and gradient boosted regression trees and interpreted by SHapley Additive exPlanation (SHAP). RESULTS: The SHAP plots visualized the weight of the covariates in the models, with estimated glomerular filtration rate and VCM daily dose as the 2 most important factors, which were adopted for the model construction. Random forest regression was the optimal ML algorithm with a relative accuracy of 82.8% and absolute accuracy of 67.2% (R2 =.61, mean absolute error = 2.4, mean square error = 10.1), and its prediction performance was verified in the validation set. CONCLUSION: The proposed ML-based model can satisfactorily predict the VCM trough concentration in adult PJI patients. Its construction can be facilitated with only 2 clinical parameters (estimated glomerular filtration rate and VCM daily dose), and prediction accuracy can be rationalized by SHAP values, which highlights a profound practical value for clinical dosing guidance and timely treatment.

2.
Nat Commun ; 15(1): 4907, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851760

ABSTRACT

Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 µm) and 26.3% over an aperture area of 16 cm2. This advance provides a route for large-scale production of perovskite/silicon tandem solar cells, marking a significant stride toward their commercial viability.

3.
Theranostics ; 14(8): 3104-3126, 2024.
Article in English | MEDLINE | ID: mdl-38855191

ABSTRACT

Background: The stem or progenitor antecedents confer developmental plasticity and unique cell identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific therapeutic targets is still absent. Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of identified immune and stromal cell subpopulations were validated by immunohistochemistry in our cohort. Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor (LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy (NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel immune and stromal cell subpopulations of breast cancer identified in our study could be potential therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and therapeutic stratification of breast cancer.


Subject(s)
Breast Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Prognosis
4.
Adv Mater ; : e2403202, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751336

ABSTRACT

Conductive metal-organic frameworks (c-MOFs) and ionic liquids (ILs) have emerged as auspicious combinations for high-performance supercapacitors. However, the nanoconfinement from c-MOFs and high viscosity of ILs slow down the charging process. This hindrance can, however, be resolved by adding solvent. Here, constant-potential molecular simulations are performed to scrutinize the solvent impact on charge storage and charging dynamics of MOF-IL-based supercapacitors. Conditions for >100% enhancement in capacity and ≈6 times increase in charging speed are found. These improvements are confirmed by synthesizing near-ideal c-MOFs and developing multiscale models linking molecular simulations to electrochemical measurements. Fundamentally, the findings elucidate that the solvent acts as an "ionophobic agent" to induce a substantial enhancement in charge storage, and as an "ion traffic police" to eliminate convoluted counterion and co-ion motion paths and create two distinct ion transport highways to accelerate charging dynamics. This work paves the way for the optimal design of MOF supercapacitors.

5.
Diabetol Metab Syndr ; 16(1): 105, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764083

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) is a highly prevalent disease and poses a significant risk to the health of pregnant women. Abdominal adipose tissue (AT) contributes to insulin resistance (IR) associated with GDM. However, the underlying mechanisms remain unclear. METHODS: In this study, we developed a mouse model of GDM by subjecting mice to a high-fat diet. We collected adipose-derived stem cells (ADSCs) from the abdominal and inguinal regions and examined their role in inducing IR in normal tissues through the secretion of small extracellular vesicles (sEVs). The sEVs derived from ADSCs isolated from GDM mice (ADSC/GDM) were found to inhibit cell viability and insulin sensitivity in AML12, a normal mouse liver cell line. RESULTS: Through proteomic analysis, we identified high levels of the thrombospondin 1 (Thbs1) protein in the sEVs derived from ADSC/GDM. Subsequent overexpression of Thbs1 protein in AML12 cells demonstrated similar IR as observed with ADSC/GDM-derived sEVs. Mechanistically, the Thbs1 protein within the sEVs interacted with CD36 and transforming growth factor (Tgf) ß receptors in AML12 cells, leading to the activation of Tgfß/Smad2 signaling. Furthermore, the administration of LSKL, an antagonistic peptide targeting Thbs1, suppressed Thbs1 expression in ADSC/GDM-derived sEVs, thereby restoring insulin sensitivity in AML12 cells and GDM mice in vivo. CONCLUSIONS: These findings shed light on the intercellular transmission mechanism through which ADSCs influence hepatic insulin sensitivity and underscore the therapeutic potential of targeting the Thbs1 protein within sEVs.

6.
Sci Rep ; 14(1): 11299, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760436

ABSTRACT

The relationship between the Systemic Inflammatory Response Index (SIRI) and the Fibrinogen-to-albumin ratio (FAR) has not been extensively investigated. The objective of this study was to determine the independent relationship between FAR and SIRI in people with osteoporotic fractures (OPF). A cross-sectional study was conducted using retrospective data from 3431 hospitalized OPF patients. The exposure variable in this study was the baseline FAR, while the outcome variable was the SIRI. Covariates, including age, gender, BMI, and other clinical and laboratory factors, were adjusted. Cross-correlation analysis and linear regression models were applied. The generalized additive model (GAM) investigated non-linear relationships. Adjusted analysis revealed an independent negative association between FAR and SIRI in OPF patients (ß = - 0.114, p = 0.00064, 95% CI - 0.180, - 0.049). A substantial U-shaped association between FAR and SIRI was shown using GAM analysis (p < 0.001). FAR and SIRI indicated a negative association for FAR below 6.344% and a positive correlation for FAR over 6.344%. The results of our study revealed a U-shaped relationship between SIRI and FAR. The lowest conceivable FAR for a bone-loose inflammatory disease might be 6.344%, suggesting that this has particular significance for the medical diagnosis and therapy of persons with OPF. Consequently, the term "inflammatory trough" is proposed. These results offer fresh perspectives on controlling inflammation in individuals with OPF and preventing inflammatory osteoporosis.


Subject(s)
Fibrinogen , Osteoporotic Fractures , Humans , Female , Fibrinogen/metabolism , Fibrinogen/analysis , Male , Osteoporotic Fractures/blood , Osteoporotic Fractures/epidemiology , Aged , Cross-Sectional Studies , Retrospective Studies , Middle Aged , Inflammation/blood , Aged, 80 and over , Serum Albumin/analysis
7.
Adv Sci (Weinh) ; : e2401436, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749008

ABSTRACT

Yarn-woven triboelectric nanogenerators (TENGs) have greatly advanced wearable sensor technology, but their limited sensitivity and stability hinder broad adoption. To address these limitations, Poly(VDF-TrFE) and P(olyadiohexylenediamine (PA66)-based nanofibers coaxial yarns (NCYs) combining coaxial conjugated electrospinning and online conductive adhesive coating are developed. The integration of these NCYs led to enhanced TENGs (NCY-TENGs), notable for their flexibility, stretchability, and improved sensitivity, which is ideal for capturing body motion signals. One significant application of this technology is the fabrication of smart insoles from NCY-TENG plain-woven fabrics. These insoles are highly sensitive and possess antibacterial, breathable, and washable properties, making them ideal for real-time gait monitoring in patients with diabetic foot conditions. The NCY-TENGs and their derivatives show immense potential for a variety of wearable electronic devices, representing a considerable advancement in the field of wearable sensors.

8.
Heliyon ; 10(10): e31380, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803927

ABSTRACT

Objective: Our aim was to develop and validate a nomogram for predicting the in-hospital 14-day (14 d) and 28-day (28 d) survival rates of patients with coronavirus disease 2019 (COVID-19). Methods: Clinical data of patients with COVID-19 admitted to the Renmin Hospital of Wuhan University from December 2022 to February 2023 and the north campus of Shanghai Ninth People's Hospital from April 2022 to June 2022 were collected. A total of 408 patients from Renmin Hospital of Wuhan University were selected as the training cohort, and 151 patients from Shanghai Ninth People's Hospital were selected as the verification cohort. Independent variables were screened using Cox regression analysis, and a nomogram was constructed using R software. The prediction accuracy of the nomogram was evaluated using the receiver operating characteristic (ROC) curve, C-index, and calibration curve. Decision curve analysis was used to evaluate the clinical application value of the model. The nomogram was externally validated using a validation cohort. Result: In total, 559 patients with severe/critical COVID-19 were included in this study, of whom 179 (32.02 %) died. Multivariate Cox regression analysis showed that age >80 years [hazard ratio (HR) = 1.539, 95 % confidence interval (CI): 1.027-2.306, P = 0.037], history of diabetes (HR = 1.741, 95 % CI: 1.253-2.420, P = 0.001), high APACHE II score (HR = 1.083, 95 % CI: 1.042-1.126, P < 0.001), sepsis (HR = 2.387, 95 % CI: 1.707-3.338, P < 0.001), high neutrophil-to-lymphocyte ratio (NLR) (HR = 1.010, 95 % CI: 1.003-1.017, P = 0.007), and high D-dimer level (HR = 1.005, 95 % CI: 1.001-1.009, P = 0.028) were independent risk factors for 14 d and 28 d survival rates, whereas COVID-19 vaccination (HR = 0.625, 95 % CI: 0.440-0.886, P = 0.008) was a protective factor affecting prognosis. ROC curve analysis showed that the area under the curve (AUC) of the 14 d and 28 d hospital survival rates in the training cohort was 0.765 (95 % CI: 0.641-0.923) and 0.814 (95 % CI: 0.702-0.938), respectively, and the AUC of the 14 d and 28 d hospital survival rates in the verification cohort was 0.898 (95 % CI: 0.765-0.962) and 0.875 (95 % CI: 0.741-0.945), respectively. The calibration curves of 14 d and 28 d hospital survival showed that the predicted probability of the model agreed well with the actual probability. Decision curve analysis (DCA) showed that the nomogram has high clinical application value. Conclusion: In-hospital survival rates of patients with COVID-19 were predicted using a nomogram, which will help clinicians in make appropriate clinical decisions.

9.
Pharmacol Res ; 205: 107235, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815879

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1ß was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1ß and suggested that silencing USP7 may be a therapeutic strategy for DCM.

10.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723908

ABSTRACT

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Subject(s)
Animals, Newborn , Mice, Knockout , Myocytes, Cardiac , Ubiquitin-Specific Peptidase 7 , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Organelle Biogenesis , Mitochondrial Dynamics/physiology , Mitochondrial Dynamics/genetics
11.
Int Immunopharmacol ; 134: 112235, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38761779

ABSTRACT

The involvement of Interferon-stimulated exonuclease gene 20 (ISG20) has been reported in renal clear cell carcinoma, hepatocellular carcinoma, and cervical cancer. However, its role in ovarian cancer chemotherapy remains unclear. In this study, we conducted a comparative analysis of TGF-ß1 and ISG20 in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells and tissues using qRT-PCR and a tissue immunofluorescence analysis. We also investigated the impact of ISG20-targeted drugs (IFN-γ) and TGF-ß1 inhibitors on cisplatin response both in vivo and in vitro. Additionally, we assessed the effects of TGF-ß1 or ISG20 on the polarization of tumor-associated macrophages through flow cytometry and ELISA analysis. Our findings revealed that ISG20 expression was lower in cisplatin-resistant tissues compared to cisplatin-sensitive tissues; however, overexpression of ISG20 sensitized ovarian cancer to cisplatin treatment. Furthermore, activation of ISG20 expression with IFN-γ or TGF-ß1 inhibitors enhanced the sensitivity of ovarian cancer cells to cisplatin therapy. Notably, our results demonstrated that TGF-ß1 promoted M2-type macrophage polarization as well as PI3K/mTOR pathway activation by suppressing ISG20 expression both in vivo and in vitro. In conclusion, our study highlights the critical role played by ISG20 within the network underlying cisplatin resistance in ovarian cancer. Targeting ISG20 using IFN-γ or TGF-ß1 inhibitors may represent a promising therapeutic strategy for treating ovarian cancer.


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases , Transforming Growth Factor beta1 , Cisplatin/pharmacology , Cisplatin/therapeutic use , Female , Humans , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta1/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/immunology , Signal Transduction/drug effects , Animals , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Mice , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Interferon-gamma/metabolism , Mice, Nude , Mice, Inbred BALB C , Intracellular Signaling Peptides and Proteins
12.
Front Endocrinol (Lausanne) ; 15: 1365169, 2024.
Article in English | MEDLINE | ID: mdl-38628588

ABSTRACT

Background: Impaired glucose utilization influences myocardial contractile function. However, the prognostic importance of left ventricular global radial strain (LV-GRS), left ventricular global circumferential strain (LV-GCS), and left ventricular global longitudinal strain (LV-GLS) in predicting new-onset heart failure (HF) in a population with diabetes is unclear. Methods: The study design is prospective cohort from the UK Biobank. Totally 37,899 participants had a complete data of cardiac magnetic resonance (CMR), of which 940 patients with diabetes were included, and all the participants completed follow-up. LV-GRS, LV-GCS, and LV-GLS were measured by completely automated CMR with tissue tagging. Cox proportional hazards regression analysis and C-index was performed to evaluate the association between the strain parameters and the new-onset HF in patients suffering from diabetes. Results: The average age of the 940 participants was 57.67 ± 6.97 years, with males comprising 66.4% of the overall population. With an average follow-up period of 166.82 ± 15.26 months, 35 (3.72%) patients reached the endpoint (emergence of new-onset HF). Significant associations were found for the three strain parameters and the new-onset HF (LV-GRS-hazard ratio [HR]: 0.946, 95% CI: 0.916-0.976; LV-GCS-HR: 1.162, 95% CI: 1.086-1.244; LV-GCS-HR: 1.181, 95% CI: 1.082-1.289). LV-GRS, LV-GCS, and LV-GLS were closely related to the related indicators to HF, and showed a high relationship to new-onset HF in individuals with diabetes at 5 and 10 years: LV-GRS: 0.75 (95% CI, 0.41-0.94) and 0.76 (95% CI, 0.44-0.98), respectively; LV-GCS: 0.80 (95% CI, 0.50-0.96) and 0.75 (95% CI, 0.41-0.98), respectively; LV-GLS: 0.72 (95% CI, 0.40-0.93) and 0.76 (95% CI, 0.48-0.97), respectively. In addition, age, sex, body mass index (BMI), and presence of hypertension or coronary artery disease (CAD) made no impacts on the association between the global strain parameters and the incidence of HF. Conclusion: LV-GRS, LV-GCS, and LV-GLS is significantly related to new-onset HF in patients with diabetes at 5 and 10 years.


Subject(s)
Diabetes Mellitus , Heart Failure , Male , Humans , Middle Aged , Prospective Studies , Ventricular Function, Left , UK Biobank , Biological Specimen Banks , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/etiology , Diabetes Mellitus/epidemiology
13.
J Colloid Interface Sci ; 665: 413-421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537589

ABSTRACT

The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.


Subject(s)
Micelles , Resilience, Psychological , Caseins , Emulsions , Water , Hydrogen-Ion Concentration
14.
Diabetol Metab Syndr ; 16(1): 51, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414084

ABSTRACT

BACKGROUND: Diabetic individuals often encounter various sleep-related challenges. Although the association between sleep duration and atrial fibrillation (AF) have been explored, the association of other sleep traits with the incidence of AF remains unclear. A comprehensive understanding of these traits is essential for a more accurate assessment of sleep conditions in patients with diabetes and the development of novel AF prevention strategies. METHODS: This study involved 23,785 patients with diabetes without any pre-existing cardiovascular disease, drawn from the UK Biobank. Sleep behaviour traits examined encompassed sleep duration, chronotype, insomnia, snoring and daytime sleepiness. Sleep duration was categorised into three groups: low (≤ 5 h), proper (6-8 h) and long (≥ 9 h). We assessed associations using multivariate Cox proportional risk regression models. Furthermore, four poor sleep behaviours were constructed to evaluate their impact on the risk of new-onset AF. RESULTS: Over a mean follow-up period of 166 months, 2221 (9.3%) new cases of AF were identified. Short (hazard ratio (HR), 1.28; 95% confidence interval (CI) 1.10-1.50) and long sleep durations (HR 1.16; 95% CI 1.03-1.32) consistently exhibited an elevated risk of AF compared to optimal sleep duration. Early chronotype, infrequent insomnia and daytime sleepiness were associated with 11% (HR 0.89; 95% CI 0.82-0.97), 15% (HR 0.85; 95% CI 0.77-0.95) and 12% (HR 0.88; 95% CI 0.81-0.96) reduced risk of new-onset AF, respectively. However, no significant association was found between snoring and the incidence of AF (HR 0.99; 95% CI 0.91-1.07). CONCLUSIONS: In diabetic populations, sleep duration, chronotype, insomnia and daytime sleepiness are strongly associated with AF incidence. An optimal sleep duration of 6-8 h presents the lowest AF risk compared to short or long sleep duration. Additionally, poor sleep patterns present a greater risk of new-onset AF in women than in men.

15.
World J Gastroenterol ; 30(3): 225-237, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38314132

ABSTRACT

This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.


Subject(s)
Parkinson Disease , Probiotics , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Parkinson Disease/microbiology , Constipation/etiology , Constipation/therapy , Fecal Microbiota Transplantation/adverse effects , Prebiotics , Probiotics/therapeutic use
16.
Science ; 383(6685): 855-859, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38386724

ABSTRACT

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

17.
Nat Commun ; 15(1): 1107, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321061

ABSTRACT

Hierarchical compartmentalization, a hallmark of both primitive and modern cells, enables the concentration and isolation of biomolecules, and facilitates spatial organization of biochemical reactions. Coacervate-based compartments can sequester and recruit a large variety of molecules, making it an attractive protocell model. In this work, we report the spontaneous formation of core-shell cell-sized coacervate-based compartments driven by spontaneous evaporation of a sessile droplet on a thin-oil-coated substrate. Our analysis reveals that such far-from-equilibrium architectures arise from multiple, coupled segregative and associative liquid-liquid phase separation, and are stabilized by stagnation points within the evaporating droplet. The formation of stagnation points results from convective capillary flows induced by the maximum evaporation rate at the liquid-liquid-air contact line. This work provides valuable insights into the spontaneous formation and maintenance of hierarchical compartments under non-equilibrium conditions, offering a glimpse into the real-life scenario.


Subject(s)
Artificial Cells , Physical Phenomena , Phase Separation , Cell Size , Veins
18.
J Infect Dis ; 229(5): 1306-1316, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38243412

ABSTRACT

BACKGROUND: Human immunodeficiency virus 1 (HIV-1) tissue reservoirs remain the main obstacle against an HIV cure. Limited information exists regarding cannabis's effects on HIV-1 infections in vivo, and the impact of cannabis use on HIV-1 parenchymal tissue reservoirs is unexplored. METHODS: To investigate whether cannabis use alters HIV-1 tissue reservoirs, we systematically collected 21 postmortem brain and peripheral tissues from 20 men with subtype C HIV-1 and with suppressed viral load enrolled in Zambia, 10 of whom tested positive for cannabis use. The tissue distribution and copies of subtype C HIV-1 LTR, gag, env DNA and RNA, and the relative mRNA levels of cytokines IL-1ß, IL-6, IL-10, and TGF-ß1 were quantified using PCR-based approaches. Utilizing generalized linear mixed models we compared persons with HIV-1 and suppressed viral load, with and without cannabis use. RESULTS: The odds of tissues harboring HIV-1 DNA and the viral DNA copies in those tissues were significantly lower in persons using cannabis. Moreover, the transcription levels of proinflammatory cytokines IL-1ß and IL-6 in lymphoid tissues of persons using cannabis were also significantly lower. CONCLUSIONS: Our findings suggested that cannabis use is associated with reduced sizes and inflammatory cytokine expression of subtype C HIV-1 reservoirs in men with suppressed viral load.


Subject(s)
Cytokines , HIV Infections , HIV-1 , Viral Load , Humans , Male , HIV-1/genetics , HIV-1/drug effects , HIV Infections/drug therapy , HIV Infections/virology , Adult , Cytokines/metabolism , Cytokines/genetics , Proviruses/genetics , Middle Aged , Zambia , DNA, Viral , Anti-Retroviral Agents/therapeutic use , Brain/virology , Brain/metabolism , Young Adult , Marijuana Use/metabolism
19.
J Med Chem ; 67(3): 2129-2151, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38289145

ABSTRACT

Due to the increasing antibiotic resistance, developing novel antimicrobials to fight infections caused by resistant bacteria is imperative. Herein, a series of novel bis-substituted aromatic amides were designed and synthesized through modifying the hit compound 1, and their antimicrobial activities were evaluated. Among them, compound 4t, as the most potent lead, exhibited excellent antimicrobial activities against Gram-positive bacteria, including clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, while keeping weak hemolytic and mammalian cytotoxic activities. Furthermore, compound 4t displayed rapid bactericidal capabilities, low tendency to produce resistance, and favorable capacities to destroy bacterial biofilms. Further explorations indicated that compound 4t induces bacterial death by binding to cardiolipin (CL) on the bacterial membrane, disrupting the cell membrane, and facilitating the accumulation of reactive oxygen species (ROS). Additionally, compound 4t showed remarkable anti-MRSA activity in vivo, demonstrating compound 4t could be developed as a potential candidate to combat MRSA infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Amides/pharmacology , Mammals
20.
Article in English | MEDLINE | ID: mdl-38289452

ABSTRACT

Myocardial ischemia reperfusion injury (MIRI) represents a prevalent and severe cardiovascular condition that arises primarily after myocardial infarction recanalization, cardiopulmonary bypass surgery, and both stable and unstable angina pectoris. MIRI can induce malignant arrhythmias and heart failure, thereby increasing the morbidity and mortality rates associated with cardiovascular diseases. Hence, it is important to assess the potential pathological mechanisms of MIRI and develop effective treatments. The role of circular RNAs (circRNAs) in MIRI has increasingly become a topic of interest in recent years. Moreover, significant evidence suggests that circRNAs play a critical role in MIRI pathogenesis, thereby representing a promising therapeutic target. This review aimed to provide a comprehensive overview of the current understanding of the role of circRNAs in MIRI and discuss the mechanisms through which circRNAs contribute to MIRI development and progression, including their effects on apoptosis, inflammation, oxidative stress, and autophagy. Furthermore, the potential therapeutic applications of circRNAs in MIRI treatment, including the use of circRNA-based therapies and modulation of circRNA expression levels, have been explored. Overall, this paper highlights the importance of circRNAs in MIRI and underscores their potential as novel therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...