Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36292249

ABSTRACT

This study aimed to evaluate the value of the deep learning image reconstruction (DLIR) algorithm (GE Healthcare's TrueFidelity™) in improving the image quality of low-dose computed tomography (LDCT) of the chest. First, we retrospectively extracted raw data of chest LDCT from 50 patients and reconstructed them by using model-based adaptive statistical iterative reconstruction-Veo at 50% (ASIR-V 50%) and DLIR at medium and high strengths (DLIR-M and DLIR-H). Three sets of images were obtained. Next, two radiographers measured the mean CT value/image signal and standard deviation (SD) in Hounsfield units at the region of interest (ROI) and calculated the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Two radiologists subjectively evaluated the image quality using a 5-point Likert scale. The differences between the groups of data were analyzed through a repeated measures ANOVA or the Friedman test. Last, our result show that the three reconstructions did not differ significantly in signal (p > 0.05) but had significant differences in noise, SNR, and CNR (p < 0.001). The subjective scores significantly differed among the three reconstruction modalities in soft tissue (p < 0.001) but not in lung tissue (p > 0.05). DLIR-H had the best noise reduction ability and improved SNR and CNR without distorting the image texture, followed by DLIR-M and ASIR-V 50%. In summary, DLIR can provide a higher image quality at the same dose, enhancing the physicians' diagnostic confidence and improving the diagnostic efficacy of LDCT for lung cancer screening.

2.
Quant Imaging Med Surg ; 12(6): 3238-3250, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35655845

ABSTRACT

Background: Studies on the application of deep learning image reconstruction (DLIR) in pediatric computed tomography (CT) are limited and have so far been mostly based on phantom. The purpose of this study was to compare the image quality and radiation dose of DLIR with that of adaptive statistical iterative reconstruction-Veo (ASiR-V) during abdominal and chest CT for the pediatric population. Methods: A pediatric phantom was used for the pilot study, and 20 children were recruited for clinical verification. The preset scan parameter noise index (NI) was 5, 8, 11, 13, 15, and 18 for the phantom study, and 8 and 13 for the clinical pediatric study. We reconstructed CT images with ASiR-V 30%, ASiR-V 70%, DLIR-M (medium) and DLIR-H (high). The regions of interest (ROI) were marked on the organs of the abdomen (liver, kidney, and subcutaneous fat) and the chest (lung, mediastinum, and spine). The CT dose index volume (CTDIvol), CT value, image noise (N), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated. The subjective image quality was assessed by 3 radiologists blindly using a 5-point scale. The dose reduction efficiency of DLIR was estimated. Results: In the phantom study, the interobserver assessment of the data measurement demonstrated good agreement [intraclass correlation coefficient (ICC) =0.814 for abdomen, 0.801 for chest]. Within the same dose level, the N, SNR, and CNR were statistically different among reconstructions, while the CT value remained the same. The N increased and SNR decreased as the radiation dose decreased. The DLIR-H performed better than ASiR-V when the radiation dose was reduced, without sacrificing image quality. In the patient study, the interobserver assessment of the data measurement demonstrated good agreement (ICC =0.774 for abdomen, 0.751 for chest). DLIR-H had the highest subjective and objective scores in the abdomen. Conclusions: Application of DLIR could help to reduce radiation dose without sacrificing the image quality of pediatric CT scans. Further clinical validation is required.

SELECTION OF CITATIONS
SEARCH DETAIL
...