Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Bioresour Technol ; 403: 130889, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797362

ABSTRACT

The effective monitoring of microalgae cultivation is crucial for optimizing their energy utilization efficiency. In this paper, a quantitative analysis method, using microalgae images based on two convolutional neural networks, EfficientNet (EFF) and residual network (RES), is proposed. Suspension samples prepared from two types of dried microalgae powders, Rhodophyta (RH) and Spirulina (SP), were used to mimic real microalgae cultivation settings. The method's prediction accuracy of the algae concentration ranges from 0.94 to 0.99. RH, with a distinctively pronounced red-green-blue value shift, achieves a higher prediction accuracy than SP. The prediction results of the two algorithms were significantly superior to those of a linear regression. Additionally, RES outperforms EFF in terms of its generalization ability and robustness, which is attributable to its distinct residual block architecture. The RES provides a viable approach for the image-based quantitative analysis.

2.
Chem Res Toxicol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771128

ABSTRACT

Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.

3.
Compr Rev Food Sci Food Saf ; 23(3): e13343, 2024 05.
Article in English | MEDLINE | ID: mdl-38629458

ABSTRACT

Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.


Subject(s)
Food Packaging , Food Storage , Food Packaging/methods , Polymers/chemistry , Food Quality
4.
Commun Med (Lond) ; 4(1): 68, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600290

ABSTRACT

BACKGROUND: In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput. METHODS: Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study. RESULTS: We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges. CONCLUSIONS: The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.


The retinal pigment epithelium (RPE) is a single layer of cells within the eye that is crucial for vision. These cells are unhealthy in many eye diseases, and this can result in vision problems, including blindness. Imaging RPE cells in living human eyes is time consuming and difficult with the current technology. Our method substantially speeds up the process of RPE imaging by incorporating artificial intelligence. This enables larger areas of the eye to be imaged more efficiently. Our method could potentially be used in the future during routine eye tests. This could lead to earlier detection and treatment of eye diseases, and the prevention of some causes of blindness.

5.
Exp Eye Res ; 241: 109856, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479725

ABSTRACT

Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) causes progressive vision loss and is potentially incurable, accounting for 25% of adRP cases. Studies on RHO-adRP mechanism were at large based on the biochemical and cellular properties, especially class-3. Nonetheless, the absence of an appropriate model for class-3 RHO-adRP has impeded comprehensive exploration. Here, induced pluripotent stem cells (iPSCs) were generated from a healthy control and two sibling RP patients with the same point mutation, c.403C>T (p.R135W). The first three-dimensional (3D) retinal organoid model of a class-3 RHO point mutation from patient-derived iPSCs was generated. Significant defects were observed in rod photoreceptors in terms of localization, morphology, transcriptional profiling and single cell resolution, to better understand the human disease resulting from RHO mutations from a developmental perspective. This first human model of class-3 RHO-adRP provides a representation of patient's retina in vitro and displays features of RHO-adRP retinal organoids relevant for therapeutic development.


Subject(s)
Retina , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Mutation , Rhodopsin/genetics , Organoids
6.
Invest Ophthalmol Vis Sci ; 64(14): 21, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37971733

ABSTRACT

Purpose: To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface. Methods: We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS. Results: We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.5 × 10-3 mm3) compared to HVs (2.4 × 10-3 mm3; P < 0.001). Retinal ganglion cell (RGC) density was 51% lower in MS participants (12.3 cells/mm2 × 1000) compared to HVs (25.0 cells/mm2 × 1000; P < 0.001). Spatial differences across the macula were observed in RGC density. RGC diameter was 15% higher in MS participants (11.7 µm) compared to HVs (10.1 µm; P < 0.001). A nonsignificant trend of higher density of macrophage-like cells in MS eyes was also observed. For all AO-OCT measures, outcomes were worse for MS participants with a history of ON compared to MS participants without a history of ON. AO-OCT measures were associated with key visual and physical disabilities in the MS cohort. Conclusions: Our findings demonstrate the utility of AO-OCT for highly sensitive and specific detection of neurodegenerative changes in MS. Moreover, the results shed light on the mechanisms that underpin specific neuronal pathology that occurs when MS attacks the retina. The new findings support the further development of AO-based biomarkers for MS.


Subject(s)
Multiple Sclerosis , Optic Neuritis , Humans , Multiple Sclerosis/complications , Pilot Projects , Tomography, Optical Coherence/methods , Retina/pathology , Retinal Ganglion Cells/pathology , Optic Neuritis/diagnosis , Optic Neuritis/pathology
7.
Chin J Nat Med ; 21(10): 775-788, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37879795

ABSTRACT

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.


Subject(s)
Ferroptosis , Influenza A virus , Animals , Mice , Network Pharmacology , Reactive Oxygen Species , Vascular Endothelial Growth Factor A , Iron , Hypoxia
8.
Plant Physiol ; 194(1): 153-167, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37801619

ABSTRACT

Xylan is a crosslinking polymer that plays an important role in the assembly of heterogeneous cell wall structures in plants. The pollen wall, a specialized cell wall matrix, exhibits diverse sculpted patterns that serve to protect male gametophytes and facilitate pollination during plant reproduction. However, whether xylan is precisely anchored into clusters and its influence on pollen wall patterning remain unclear. Here, we report xylan clustering on the mature pollen surface in different plant species that is indispensable for the formation of sculpted exine patterns in dicot and monocot plants. Chemical composition analyses revealed that xylan is generally present at low abundance in the mature pollen of flowering plants and shows plentiful variations in terms of substitutions and modifications. Consistent with the expression profiles of their encoding genes, genetic characterization revealed IRREGULAR XYLEM10-LIKE (IRX10L) and its homologous proteins in the GT47 family of glycosyltransferases as key players in the formation of these xylan micro-/nano-compartments on the pollen surface in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). A deficiency in xylan biosynthesis abolished exine patterning on pollen and compromised male fertility. Therefore, our study outlines a mechanism of exine patterning and provides a tool for manipulating male fertility in crop breeding.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Xylans/metabolism , Plant Breeding , Pollen/genetics , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Medicina (Kaunas) ; 59(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37512096

ABSTRACT

Background and Objectives: Triple-negative breast cancer (TNBC), a highly aggressive and heterogeneous subtype of breast cancer, accounts for ap-proximately 10-15% of all breast cancer cases. Currently, there is no effective therapeutic target for TNBC. Tu-mor-associated macrophages (TAMs), which can be phenotypically classified into M1 and M2 subtypes, have been shown to influence the prognosis of various cancers, including ovarian cancer. This study aimed to investigate the role of M1/M2 macrophages in the TNBC tumor microenvironment (TME), with a focus on identifying prognostic genes and predicting immunotherapy response. Materials and Methods: The study employed the CIBERSORT algorithm to analyze immune cell expression in the TME. Genes associated with the M1/M2 macrophage ratio were identified using Pearson correlation analysis and used to classify patients into dis-tinct clusters. Dimensionality reduction techniques, including univariate Cox regression and Lasso, were applied to these genes. The expression of prognostic genes was validated through immunohistochemistry. Results: The study found a high prevalence of TAMs in the TME. Among the patient clusters, 109 differentially expressed genes (DEGs) were identified. Three significant DEGs (LAMP3, GZMB, and CXCL13) were used to construct the riskScores. The riskScore model effectively stratified patients based on mortality risk. Gene Set Enrichment Analysis (GSEA) associated the riskScore with several significant pathways, including mismatch repair, JAK/STAT3 signaling, VEGF signaling, antigen processing presentation, ERBB signaling, and P53 signaling. The study also predicted patient sensitivity to im-munotherapy using the riskScores. The expression of the three significant DEGs was validated through immunohisto-chemistry. Conclusions: The study concluded that the riskScore model, based on the M1/M2 macrophage ratio, is a valid prognostic tool for TNBC. The findings underscore the importance of the TME in TNBC progression and prognosis and highlight the po-tential of the riskScore model in predicting immunotherapy response in TNBC patients.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Prognosis , Immunotherapy , Blood Cell Count , Tumor Microenvironment/genetics
10.
Transl Oncol ; 35: 101733, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421907

ABSTRACT

Breast cancer progression and metastasis are governed by a complex interplay within the tumor immune microenvironment (TIME), involving numerous cell types. Lymph node metastasis (LNM) is a key prognostic marker associated with distant organ metastasis and reduced patient survival, but the mechanisms underlying its promotion by breast cancer stem cells (CSCs) remain unclear. Our study sought to unravel how CSCs reprogram TIME to facilitate LNM. Utilizing single-cell RNA sequencing, we profiled TIME in primary cancer and corresponding metastatic lymph node samples from patients at our institution. To verify the derived data, we cultured CSCs and performed validation assays employing flow cytometry and CyTOF. Our analysis revealed distinct differences in cellular infiltration patterns between tumor and LNM samples. Importantly, RAC2 and PTTG1 double-positive CSCs, which exhibit the highest stem-like attributes, were markedly enriched in metastatic lymph nodes. These CSCs are hypothesized to foster metastasis via activation of specific metastasis-related transcription factors and signaling pathways. Additionally, our data suggest that CSCs might modulate adaptive and innate immune cell evolution, thereby further contributing to metastasis. In summary, this study illuminates a critical role of CSCs in modifying TIME to facilitate LNM. The enrichment of highly stem-like CSCs in metastatic lymph nodes offers novel therapeutic targeting opportunities and deepens our understanding of breast cancer metastasis.

11.
Materials (Basel) ; 16(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241417

ABSTRACT

In this study, a micro-nano TaC ceramic steel matrix reinforced layer was prepared by an in situ reaction between a pure tantalum plate and GCr15 steel. The microstructure and phase structure of the in situ reaction reinforced layer of the sample at 1100 °C and reaction time 1 h were characterized with FIB micro-section, TEM transmission, SAED diffraction pattern, SEM and EBSD. The phase composition, phase distribution, grain size, grain orientation and grain boundary deflection, phase structure and lattice constant of the sample were characterized in detail. The results show that the phase composition of the Ta sample is Ta, TaC, Ta2C and α-Fe. TaC is formed after Ta and carbon atoms meet, and the orientation changes in the X and Z directions. The grain size of TaC is widely in the range of 0~0.4 µm, and the angular deflection of TaC grain is not obvious. The high-resolution transmission structure, diffraction pattern and interplanar spacing of the phase were characterized, and the crystal planes of different crystal belt axes were determined. The study provides technical and theoretical support for further research on the preparation technology and microstructure of the TaC ceramic steel matrix reinforcement layer.

12.
Cancer Lett ; 566: 216244, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37244445

ABSTRACT

Castration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance. We described the single-cell transcriptional landscape of PCa. Higher cancer heterogeneity was explored in CRPC, with stronger cell cycling status and heavier copy number variant burden of luminal cells. Cancer-associated fibroblasts (CAFs), which are one of the most critical components of TME, demonstrated unique expression and cell-cell communication features in CRPC. A CAFs subtype with high expression of HSD17B2 in CRPC was identified with inflammatory features. HSD17B2 catalyses the conversion of testosterone and dihydrotestosterone to their less active forms, which was associated with steroid hormone metabolism in PCa tumour cells. However, the characteristics of HSD17B2 in PCa fibroblasts remained unknown. We found that HSD17B2 knockdown in CRPC-CAFs could inhibit migration, invasion, and castration resistance of PCa cells in vitro. Further study showed that HSD17B2 could regulate CAFs functions and promote PCa migration through the AR/ITGBL1 axis. Overall, our study revealed the important role of CAFs in the formation of CRPC. HSD17B2 in CAFs regulated AR activation and subsequent ITGBL1 secretion to promote the malignant behaviour of PCa cells. HSD17B2 in CAFs could serve as a promising therapeutic target for CRPC.


Subject(s)
Cancer-Associated Fibroblasts , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Cancer-Associated Fibroblasts/metabolism , Sequence Analysis, RNA , Hormones/metabolism , Cell Line, Tumor , Receptors, Androgen/metabolism , Tumor Microenvironment , Estradiol Dehydrogenases , Integrin beta1/metabolism
13.
Biomed Opt Express ; 14(2): 815-833, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36874491

ABSTRACT

Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.

14.
Commun Biol ; 5(1): 893, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100689

ABSTRACT

Choroideremia is an X-linked, blinding retinal degeneration with progressive loss of photoreceptors, retinal pigment epithelial (RPE) cells, and choriocapillaris. To study the extent to which these layers are disrupted in affected males and female carriers, we performed multimodal adaptive optics imaging to better visualize the in vivo pathogenesis of choroideremia in the living human eye. We demonstrate the presence of subclinical, widespread enlarged RPE cells present in all subjects imaged. In the fovea, the last area to be affected in choroideremia, we found greater disruption to the RPE than to either the photoreceptor or choriocapillaris layers. The unexpected finding of patches of photoreceptors that were fluorescently-labeled, but structurally and functionally normal, suggests that the RPE blood barrier function may be altered in choroideremia. Finally, we introduce a strategy for detecting enlarged cells using conventional ophthalmic imaging instrumentation. These findings establish that there is subclinical polymegathism of RPE cells in choroideremia.


Subject(s)
Choroideremia , Retinal Degeneration , Choroid/diagnostic imaging , Choroideremia/genetics , Choroideremia/pathology , Female , Humans , Male , Optics and Photonics , Retinal Cone Photoreceptor Cells , Retinal Degeneration/pathology
15.
Front Aging Neurosci ; 14: 948279, 2022.
Article in English | MEDLINE | ID: mdl-36034145

ABSTRACT

Purpose: Mutation in the USH2A gene is the most common cause of inherited retinal dystrophy (IRD), including non-syndromic retinitis pigmentosa (RP) and Usher syndrome II (USH2). Gene editing and therapy targeting USH2A, especially the hotspot region, would benefit a large proportion of IRD patients. In this study, we comprehensively analyzed the genetic spectrum of the USH2A gene, aiming to identify global hot spot mutations in USH2A-related IRDs and differences in hot spot regions across continents. Materials and methods: A retrospective USH2A-related IRD study was conducted, including our IRD cohort, and reported USH2A studies worldwide. Results: A total of 3,972 mutated USH2A alleles of approximately 1,935 patients were collected from 33 cohort studies worldwide, containing 102 alleles of 51 patients in our IRD cohort. Mutations in exon 13 were the most common, reaching 18.4% globally and a higher frequency of 22% in America, 19.2% in Europe, and a lower 12% in East Asia. Pathogenic mutations that affected 10 of the 72 exons of USH2A, exon 2, exon 13, exon 41-43, exon 50, exon 54, exon 57, exon 61, and exon 63 in total were responsible for half of global USH2A mutant alleles. With base editors including adenine base editor (ABE), cytidine base editor (CBE), and glycosylase base editor (GBE), 76.3% of single nucleotide variations (SNVs) and 58% of all mutations in USH2A are correctable. Meantime, four novel pathogenic mutations were revealed in our IRD cohort, p. (Val1130Cysfs*72), p. (Ala2139fs*14), p. (Gly4139Arg), and p. (Val4166Cysfs*7). Conclusion: In this study, we revealed four novel mutations, expanding the spectrum of USH2A mutations, and importantly presented global hotspot exons and mutations of USH2A as well as the proportion of SNVs that can be restored by different base editors, providing a perspective for exploring high-efficiency and broader-reaching gene editing and gene therapies.

16.
Biomed Opt Express ; 13(11): 5860-5878, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733751

ABSTRACT

We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.

17.
Invest Ophthalmol Vis Sci ; 62(13): 2, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34605879

ABSTRACT

Purpose: The purpose of this study was to characterize the relationship between retinal ganglion cell layer (GCL) soma density and capillary density in glaucomatous eyes. Methods: Six glaucoma subjects with known hemifield defects and 6 age-matched controls were imaged with adaptive optics - optical coherence tomography (AO-OCT) at 6 locations: 3 degrees, 6 degrees, and 12 degrees temporal to the fovea above and below the midline. GCL soma density and capillary density were measured at each location. Coefficients of determination (pseudo R2) and slopes between GCL soma and capillary density were determined from mixed-effects regressions and were compared between glaucoma and control subjects, between more and less affected hemifield in subjects with glaucoma, and between subjects with early and moderate glaucoma, both in a local, bivariate model and then a global, multivariable model controlling for eccentricity and soma size. Results: The global correlation between GCL soma and capillary density was stronger in control versus subjects with glaucoma (R2 = 0.59 vs. 0.22), less versus more affected hemifields (R2 = 0.55 vs. 0.01), and subjects with early versus moderate glaucoma subjects (R2 = 0.44 vs. 0.18). When controlling for eccentricity and soma size, we noted an inverse soma-capillary density local relationship in subjects with glaucoma (-388 ± 190 cells/mm2 per 1% change in capillary density, P = 0.046) and more affected hemifields (-602 ± 257 cells/mm2 per 1% change in capillary density, P = 0.03). Conclusions: An inverted soma-capillary density local relationship in areas affected by glaucoma potentially explains weaker global correlations observed between GCL soma and capillary density, suggesting cell-vessel mismatch is associated with the disease.


Subject(s)
Glaucoma/diagnosis , Microvascular Density/physiology , Optic Disk/blood supply , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods , Visual Fields/physiology , Female , Follow-Up Studies , Glaucoma/physiopathology , Humans , Male , Middle Aged , Nerve Fibers/pathology
18.
J Healthc Eng ; 2021: 9930412, 2021.
Article in English | MEDLINE | ID: mdl-34336173

ABSTRACT

With the development of society and economy, people's lifestyle and eating habits have undergone great changes, such as spending a long time behind desks, sitting for a long time, drinking and staying up late, and emotional depression; functional constipation, a disease of the digestive system, has changed. It is extremely common, and the age of onset is gradually decreasing. The development of the medical and health industry is also accompanied by the rapid development of technologies such as the Internet of Things, big data, and artificial intelligence, which penetrates into all aspects of the medical and health field and has entered the stage of smart medical care. This article proposes a study on the clinical acupoint selection rules of massage and acupuncture treatment of functional constipation based on smart medical big data analysis. This article adopts a variety of methods such as literature data method and experimental research method to carry out related theoretical research and promotion of massage and acupuncture treatment under the background of smart medical big data and design a clinical experiment of massage and acupuncture treatment based on big data analysis for functional constipation. The advantages of big data algorithms, the law of selecting acupoints in massage and acupuncture treatment, and the comparison of CCS symptom score and PAC-QOL score are analyzed. From the frequency of acupuncture treatment of functional constipation, the top 5 acupoints are Tianshu, Shangjuxu, Dachangshu, Zusanli, and Zhigou. In this paper, the total effective rate of treatment in the experimental group reached 96.56%, while the total effective rate of treatment in the control group was only 75.02%. Tuina and acupuncture treatment of functional constipation has a good therapeutic effect and is worthy of extensive clinical application.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Artificial Intelligence , Big Data , Constipation/drug therapy , Data Analysis , Humans , Massage , Quality of Life , Treatment Outcome
19.
Biomed Opt Express ; 12(3): 1449-1466, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796365

ABSTRACT

In vivo imaging of human retinal pigment epithelial (RPE) cells has been demonstrated through multiple adaptive optics (AO)-based modalities. However, whether consistent and complete information regarding the cellular structure of the RPE mosaic is obtained across these modalities remains uncertain due to limited comparisons performed in the same eye. Here, an imaging platform combining multimodal AO-scanning light ophthalmoscopy (AO-SLO) with AO-optical coherence tomography (AO-OCT) is developed to make a side-by-side comparison of the same RPE cells imaged across four modalities: AO-darkfield, AO-enhanced indocyanine green (AO-ICG), AO-infrared autofluorescence (AO-IRAF), and AO-OCT. Co-registered images were acquired in five subjects, including one patient with choroideremia. Multimodal imaging provided multiple perspectives of the RPE mosaic that were used to explore variations in RPE cell contrast in a subject-, location-, and even cell-dependent manner. Estimated cell-to-cell spacing and density were found to be consistent both across modalities and with normative data. Multimodal images from a patient with choroideremia illustrate the benefit of using multiple modalities to infer the cellular structure of the RPE mosaic in an affected eye, in which disruptions to the RPE mosaic may locally alter the signal strength, visibility of individual RPE cells, or even source of contrast in unpredictable ways.

20.
Front Aging Neurosci ; 13: 629214, 2021.
Article in English | MEDLINE | ID: mdl-33767618

ABSTRACT

Dark cone photoreceptors, defined as those with diminished or absent reflectivity when observed with adaptive optics (AO) ophthalmoscopy, are increasingly reported in retinal disorders. However, their structural and functional impact remain unclear. Here, we report a 3-year longitudinal study on a patient with oligocone trichromacy (OT) who presented with persistent, widespread dark cones within and near the macula. Diminished electroretinogram (ERG) cone but normal ERG rod responses together with normal color vision confirmed the OT diagnosis. In addition, the patient had normal to near normal visual acuity and retinal sensitivity. Occasional dark gaps in the photoreceptor layer were observed on optical coherence tomography, in agreement with reflectance AO scanning light ophthalmoscopy, which revealed that over 50% of the cones in the fovea were dark, increasing to 74% at 10° eccentricity. In addition, the cone density was 78% lower than normal histologic value at the fovea, and 20-40% lower at eccentricities of 5-15°. Interestingly, color vision testing was near normal at locations where cones were predominantly dark. These findings illustrate how a retina with predominant dark cones that persist over at least 3 years can support near normal central retinal function. Furthermore, this study adds to the growing evidence that cones can continue to survive under non-ideal conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...