Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Biomed Pharmacother ; 172: 116269, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367549

ABSTRACT

AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 µM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.


Subject(s)
Breast Neoplasms , Diterpenes , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Culture Media, Conditioned , Diterpenes/pharmacology , Mammary Neoplasms, Animal/drug therapy , Vascular Endothelial Growth Factor A
2.
Int J Biol Macromol ; 259(Pt 2): 129295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211914

ABSTRACT

Lyme disease, caused by Lyme Borrelia spirochetes, is the most common vector-borne illness in the United States. Despite its global significance, with an estimated 14.5 % seroprevalence, there is currently no licensed vaccine. Previously, we demonstrated that CspZ-YA protein conferred protection against Lyme Borrelia infection, making it a promising vaccine candidate. However, such a protein was tagged with hexahistidine, and thus not preferred for vaccine development; furthermore, the formulation to stabilize the protein was understudied. In this work, we developed a two-step purification process for tag-free E. coli-expressed recombinant CspZ-YA. We further utilized various bioassays to analyze the protein and determine the suitable buffer system for long-term storage and formulation as a vaccine immunogen. The results indicated that a buffer with a pH between 6.5 and 8.5 stabilized CspZ-YA by reducing its surface hydrophobicity and colloidal interactions. Additionally, low pH values induced a change in local spatial conformation and resulted in a decrease in α-helix content. Lastly, an optimal salinity of 22-400 mM at pH 7.5 was found to be important for its stability. Collectively, this study provides a fundamental biochemical and biophysical understanding and insights into the ideal stabilizing conditions to produce CspZ-YA recombinant protein for use in vaccine formulation and development.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Lyme Disease Vaccines , Escherichia coli/genetics , Seroepidemiologic Studies , Lyme Disease/prevention & control , Bacterial Outer Membrane Proteins/chemistry
3.
Int J Stroke ; 19(1): 40-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37477427

ABSTRACT

OBJECTIVE: Hypotension is recognized as a common complication after carotid artery stenting, but its incidence and the risk factors associated with it are uncertain. Therefore, we performed a systematic review and meta-analysis to investigate and identify risk factors for hypotension after surgery. METHODS: We retrieved risk factors from eight databases for case-control and cross-sectional studies of hypotension after carotid artery stenting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines on 28 November 2022. Data were analyzed by using R4.2.1 and Review Manager 5.3. RESULTS: A total of 2843 samples were searched, and 17 publications were included in the analysis. The meta-analysis results showed that the incidence of hypotension after surgery was 28.6% (95% confidence interval [CI] (0.225, 0.347)). Age ⩾ 65 years (odds ratio [OR] = 4.55, 95% CI (2.50, 8.29), P < 0.00001), stenosis site (bulb) (OR = 4.41, 95% CI (2.50, 7.79), P < 0.00001), severe stenosis (OR = 3.56, 95% CI (1.62, 7.85), P = 0.002), stenosis proximity (⩽ 10 mm) to bifurcation (OR = 2.69, 95% CI (1.74, 4.15), P < 0.00001), calcified plaques (OR = 4.64, 95% CI (1.93, 11.14), P = 0.0006), post-balloon dilation (OR = 5.95, 95% CI (2.31, 15.31), P = 0.0002), bilateral carotid stenting (OR = 30.51, 95% CI (2.33, 399.89), P = 0.009), and intravenous fluid intake/mL on the first postoperative day (mean difference = 444.99, 95% CI (141.40, 748.59), P = 0.004) were risk factors for hypotension after surgery. CONCLUSIONS: A high incidence of hypotension was observed after carotid artery stenting. Age, stenosis site, severe stenosis, stenosis proximity to bifurcation, calcified plaques, post-balloon dilation, type of surgery, and intravenous fluid intake were identified as risk factors.


Subject(s)
Carotid Stenosis , Hypotension , Stroke , Humans , Aged , Stents/adverse effects , Carotid Stenosis/surgery , Carotid Stenosis/complications , Constriction, Pathologic , Incidence , Cross-Sectional Studies , Treatment Outcome , Stroke/complications , Hypotension/epidemiology , Hypotension/etiology , Risk Factors , Carotid Arteries
4.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37896960

ABSTRACT

(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen.

5.
Expert Rev Vaccines ; 22(1): 495-500, 2023.
Article in English | MEDLINE | ID: mdl-37252854

ABSTRACT

INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Technology , Recombinant Proteins/genetics , Antibodies, Viral , Antibodies, Neutralizing
6.
Eur J Med Chem ; 248: 115081, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36623328

ABSTRACT

Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Infant, Newborn , Animals , Humans , Antiviral Agents/pharmacology , Zika Virus Infection/drug therapy
7.
BMC Neurol ; 22(1): 297, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953801

ABSTRACT

BACKGROUND: Pulmonary infection is a frequent complication among stroke patients and adversely affects clinical outcomes, increases the length of hospitalization stay and costs, and aggravates the financial burden of the national medical health system. Early identification and management of high-risk patients are necessary and imperative to reduce the incidence of stroke-associated pneumonia (SAP). AIM: The evidence-based practice project evaluated the effectiveness of a standard care bundle intervention in preventing the occurrence of SAP. METHODS: The project was conducted in a neurology department of a teaching hospital. Given the variation in assessment and management standards, evidence-based practice (EBP) methodology was used to establish a process for quality improvement. A thorough literature search was conducted to identify evidence-based interventions to manage and prevent SAP. Thorough critiques of the literature and synthesis of the evidence were completed. A systematic management flow and care bundle interventions were established. The care bundle included interventions, such as the utilization of tools for SAP risk screening; dysphagia screening and rehabilitation; feeding modification, oral care, airway management, position management, and the nursing techniques of traditional Chinese medicine. RESULTS: A significant improvement was observed in preventing SAP in patients in the postimplementation group compared with those in the preimplementation group (14.0% vs. 37.2%, p = 0.025). In addition, significantly lower duration of hospitalization, lower rate of aspiration, and improvements in albumin and oral hygiene were found after the implementation of the care bundle. CONCLUSIONS: Evidence-based care bundles successfully empower nurses to reduce the incidence of SAP. The management flow of SAP prevention could be promoted to other units of the neurology department in the future. The results of the project reflect positively on the capacity to implement EBP in an acute care setting for stroke. The EBP methodology can be utilized to solve other clinical problems.


Subject(s)
Patient Care Bundles , Pneumonia , Stroke , Evidence-Based Practice , Humans , Incidence , Pneumonia/complications , Pneumonia/epidemiology , Pneumonia/prevention & control , Stroke/complications , Stroke/epidemiology , Stroke/therapy
8.
Infect Immun ; 90(7): e0006222, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35861564

ABSTRACT

Transmitted by ticks, the bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD), the most common vector-borne disease in the Northern hemisphere. No effective vaccines are currently available. B. burgdorferi sensu lato produces the CspZ protein that binds to the complement inhibitor, factor H (FH), promoting evasion of the host complement system. We previously showed that while vaccination with CspZ did not protect mice from B. burgdorferi infection, mice can be protected after immunization with CspZ-Y207A/Y211A (CspZ-YA), a CspZ mutant protein without FH-binding activity. To further study the mechanism of this protection, herein we evaluated both poly- and monoclonal antibodies recognizing CspZ FH-binding or non-FH-binding sites. We found that the anti-CspZ antibodies that recognize the FH-binding sites (i.e., block FH-binding activity) eliminate B. burgdorferi sensu lato in vitro more efficiently than those that bind to the non-FH-binding sites, and passive inoculation with anti-FH-binding site antibodies eradicated B. burgdorferi sensu lato in vivo. Antibodies against non-FH-binding sites did not have the same effect. These results emphasize the importance of CspZ FH-binding sites in triggering a protective antibody response against B. burgdorferi sensu lato in future LD vaccines.


Subject(s)
Borrelia burgdorferi Group , Borrelia , Ixodes , Lyme Disease , Animals , Antibodies , Binding Sites , Complement Factor H , Epitopes , Ixodes/microbiology , Lyme Disease/microbiology , Mice
9.
Vaccine ; 40(26): 3655-3663, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35568591

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum + CpG. We also evaluated mice immunized with RBD/alum + CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum + CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum + CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2, including variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Alum Compounds , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Mice , Recombinant Proteins , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
10.
Front Aging Neurosci ; 14: 754334, 2022.
Article in English | MEDLINE | ID: mdl-35273489

ABSTRACT

Objective: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive deterioration of memory and cognition. Mild cognitive impairment (MCI) has been implicated as a prodromal phase of AD. Although abnormal functional connectivity (FC) has been demonstrated in AD and MCI, the clinical differentiation of AD, MCI, and normal aging remains difficult, and the distinction between MCI and normal aging is especially problematic. We hypothesized that FC between the hippocampus and other brain structures is altered in AD and MCI, and that measurement of abnormal FC could have diagnostic utility for the classification of different AD stages. Methods: Elderly adults aged 60-85 years were assigned to AD, MCI, or normal control (NC) groups based on clinical criteria. Functional magnetic resonance scanning was completed by 119 subjects. Five dimension reduction/classification methods were applied, using hippocampus-derived FC strengths as input features. Classification performance of the five dimensionality reduction methods was compared between AD, MCI, and NC groups. Results: FCs between the hippocampus and left insula, left thalamus, cerebellum, right lingual gyrus, posterior cingulate cortex, and precuneus were significantly reduced in AD and MCI. Support vector machine learning coupled with sparse principal component analysis demonstrated the best discriminative performance, yielding classification accuracies of 82.02% (AD vs. NC), 81.33% (MCI vs. NC), and 81.08% (AD vs. MCI). Conclusion: Hippocampus-seed-based FCs were significantly different between AD, MCI, and NC groups. FC assessment combined with widely used machine learning methods can improve AD differential diagnosis, and may be especially useful to distinguish MCI from normal aging.

11.
Protein Expr Purif ; 190: 106003, 2022 02.
Article in English | MEDLINE | ID: mdl-34688919

ABSTRACT

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Subject(s)
COVID-19 Vaccines , Gene Expression , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Humans , Mice , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/pharmacology
12.
bioRxiv ; 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-34268512

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General of India. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.

13.
Phytomedicine ; 94: 153824, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34763314

ABSTRACT

BACKGROUND: The anti-cancer activity of andrographolide (Andro) has been extensively demonstrated in recent years. It is supposed that modifying the chemical structure of Andro can improve its efficacy and reduce its toxicity. PURPOSE: In this study, the anti-cancer effect of a 14ß-(2'-chlorophenoxy) derivative of andrographolide known as AGS-30 was investigated, and its underlying mechanisms were also explored. STUDY DESIGN/METHODS: Different cancer cells were used to evaluate and compare the in vitro anti-cancer effects of Andro and AGS-30. Human colon cancer cells HT-29 and HCT-116 were used to study the underlying anti-cancer mechanisms of AGS-30. HT-29 cells xenografted in nude mouse model was used to compare the in vivo anti-tumour efficacies of Andro and AGS-30. RESULT: In vitro studies showed that AGS-30 possessed an anti-cancer effect by inhibiting the viability, colony formation and migration of cancer cells. It significantly induced the generation of reactive oxygen species (ROS), caused the loss of mitochondrial membrane potential and triggered the apoptosis in colon cancer cells. These effects of AGS-30 were more potent than those of Andro. In addition, the expression levels of proteins associated with apoptosis, including phospho-JNK1/2 as well as cleaved caspase 9, caspase 3, and poly(ADP ribose) polymerase, were elevated in AGS-30-treated colon cancer cells. Moreover, these elevated levels of the proteins were inhibited by the antioxidant N-acetylcysteine and the JNK inhibitor SP600125, suggesting the involvement of ROS/JNK-dependent mechanisms in AGS-30-induced apoptosis. The in vitro anti-cancer effect could be reproduced in an HT-29 colon cancer cell xenografted nude mouse model. CONCLUSION: The anti-cancer effect of AGS-30 is stronger than that of Andro. AGS-30 induces apoptosis of colon cancer cells through ROS/JNK-dependent pathway. Our findings may provide insights for the future development of derivatives of Andro as novel chemotherapeutic agents.


Subject(s)
Colonic Neoplasms , Diterpenes , Animals , Apoptosis , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Diterpenes/pharmacology , Humans , Mice , Reactive Oxygen Species
14.
Biomed Res Int ; 2021: 1481215, 2021.
Article in English | MEDLINE | ID: mdl-34660780

ABSTRACT

Currently, it still remains a difficult problem to treat apical insufficiency of young permanent teeth resulted from pulp necrosis or periapical periodontitis. Previous studies have demonstrated that the treatment of revascularization using stem cells from apical papilla (SCAPs) results in increased root length and thickness of traumatized immature teeth and necrotic pulp. In this study, we investigated the role of 1,25-dihydroxyvitamin D3 in regulating the adhesion, spreading, proliferation, and osteogenic differentiation of SCAP, laying the foundation for subsequent clinical drug development. The immature tooth samples were collected in clinical treatment. SCAPs with stable passage ability were isolated and cultured. The multidifferentiation potential was determined by directed induction culture, while the stem cell characteristics were identified by flow cytometry. There were three groups: group A-SCAPs general culture group; group B-SCAPs osteogenesis induction culture group; and group C-SCAPs osteogenesis induction culture+1,25-dihydroxyvitamin D3 group, and the groups were compared statistically. The proliferation of SCAPs in each groups was detected through CCK-8 assay. RT-qPCR was used to detect the transcription levels of Runx2, ALP, Col I, and OCN of SCAPs in each groups. Results exhibited that the isolated SCAPs had multidifferentiation potential and stem cell characteristics. After 24 h culturing, cells in group C spread better than those in groups A and B. The proliferation activity of SCAPs factored by CCK-8 ranked as group C > group B > group A, while the transcription levels of Runx2, ALP, Col I, and OCN leveled as group C > group B > group A. These results suggested that 1,25-dihydroxyvitamin D3 can significantly promote the adhesion, spreading, and proliferation of SACPs and improve the osteogenic differentiation of SCAPs by means of regulating upward the transcription level of osteogenic differentiation marker.


Subject(s)
Calcitriol/pharmacology , Dental Papilla/physiology , Odontogenesis/drug effects , Osteogenesis/drug effects , Stem Cells/physiology , Adolescent , Bone Density Conservation Agents/pharmacology , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Child , Dental Papilla/cytology , Dental Papilla/drug effects , Humans , Stem Cells/cytology , Stem Cells/drug effects
15.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: mdl-34266981

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
16.
Dev Comp Immunol ; 124: 104201, 2021 11.
Article in English | MEDLINE | ID: mdl-34252475

ABSTRACT

DNA-binding protein Ikaros is a major determinant of haematopoietic lineage, especially in the development, differentiation and proliferation of lymphocytes. In the present study, a Ikaros homologue (designed as CgIkaros-like) was identified and characterized as a vital determinant in the proliferation of haemocytes during haematopoiesis of Pacific oyster Crassostrea gigas. The complete coding sequence of CgIkaros-like was of 1329 bp encoding a predicted polypeptide of 442 amino acids with four ZnF regions, locating at the C-terminus and N-terminus respectively. The highest expression level of CgIkaros-like mRNA was found in gills, followed by haemocytes and gonad. The mRNA transcripts of CgIkaros-like could be detected in all the haemocytes with higher abundance in semi-granulocytes and agranulocytes. CgIkaros-like protein was localized in both of cytoplasm and nucleus with higher abundance in nucleus of oyster haemocytes. The mRNA and protein expression levels of agranulocyte marker CgCD9, granulocyte marker CgAATase, cell cycle related gene CgCDK2, Notch receptor CgNotch and Notch target gene CgHes1 all increased significantly (p < 0.05) after CgIkaros-like was interfered by siRNAs, which were about 27.33-, 2.63-, 24.34-, 4.45- and 6.08-fold of that in the siRNA-NC control group, respectively. While the transcripts of CgGATA3 and CgRunx did not change significantly after CgIkaros-like was interfered. These results demonstrated that CgIkaros-like functioned as a transcription factor combined with Notch pathway to mediate CgCDK2 and regulate the proliferation of oyster haemocytes.


Subject(s)
Cell Proliferation/genetics , Crassostrea/physiology , Ikaros Transcription Factor/metabolism , Amino Acid Sequence , Animals , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Hematopoiesis/genetics , Hemocytes/cytology , Hemocytes/metabolism , Ikaros Transcription Factor/genetics , Phylogeny , RNA, Messenger/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Sequence Alignment , Tissue Distribution
17.
Hepatol Int ; 15(4): 995-1005, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34115257

ABSTRACT

BACKGROUND AND AIMS: Highly accurate noninvasive methods for predicting gastroesophageal varices needing treatment (VNT) are desired. Radiomics is a newly emerging technology of image analysis. This study aims to develop and validate a novel noninvasive method based on radiomics for predicting VNT in cirrhosis. METHODS: In this retrospective-prospective study, a total of 245 cirrhotic patients were divided as the training set, internal validation set and external validation set. Radiomics features were extracted from portal-phase computed tomography (CT) images of each patient. A radiomics signature (Rad score) was constructed with the least absolute shrinkage and selection operator algorithm and tenfold cross-validation in the training set. Combined with independent risk factors, a radiomics nomogram was built with a multivariate logistic regression model. RESULTS: The Rad score, consisting of 14 features from the gastroesophageal region and 5 from the splenic hilum region, was effective for VNT classification. The diagnostic performance was further improved by combining the Rad score with platelet counts, achieving an AUC of 0.987 (95% CI 0.969-1.00), 0.973 (95% CI 0.939-1.00) and 0.947 (95% CI 0.876-1.00) in the training set, internal validation set and external validation set, respectively. In efficacy and safety assessment, the radiomics nomogram could spare more than 40% of endoscopic examinations with a low risk of missing VNT (< 5%), and no more than 8.3% of unnecessary endoscopic examinations still be performed. CONCLUSIONS: In this study, we developed and validated a novel, diagnostic radiomics-based nomogram which is a reliable and noninvasive method to predict VNT in cirrhotic patients. CLINICAL TRIALS REGISTRATION: NCT04210297.


Subject(s)
Nomograms , Varicose Veins , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Prospective Studies , Retrospective Studies
18.
Appl Microbiol Biotechnol ; 105(10): 4153-4165, 2021 May.
Article in English | MEDLINE | ID: mdl-33959781

ABSTRACT

A SARS-CoV-2 RBD219-N1C1 (RBD219-N1C1) recombinant protein antigen formulated on Alhydrogel® has recently been shown to elicit a robust neutralizing antibody response against SARS-CoV-2 pseudovirus in mice. The antigen has been produced under current good manufacturing practices (cGMPs) and is now in clinical testing. Here, we report on process development and scale-up optimization for upstream fermentation and downstream purification of the antigen. This includes production at the 1-L and 5-L scales in the yeast, Pichia pastoris, and the comparison of three different chromatographic purification methods. This culminated in the selection of a process to produce RBD219-N1C1 with a yield of >400 mg per liter of fermentation with >92% purity and >39% target product recovery after purification. In addition, we show the results from analytical studies, including SEC-HPLC, DLS, and an ACE2 receptor binding assay that were performed to characterize the purified proteins to select the best purification process. Finally, we propose an optimized upstream fermentation and downstream purification process that generates quality RBD219-N1C1 protein antigen and is fully scalable at a low cost. KEY POINTS: • Yeast fermentation conditions for a recombinant COVID-19 vaccine were determined. • Three purification protocols for a COVID-19 vaccine antigen were compared. • Reproducibility of a scalable, low-cost process for a COVID-19 vaccine was shown. Graphical abstract.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Reproducibility of Results , SARS-CoV-2 , Saccharomycetales , Spike Glycoprotein, Coronavirus
19.
Hum Vaccin Immunother ; 17(8): 2356-2366, 2021 08 03.
Article in English | MEDLINE | ID: mdl-33847226

ABSTRACT

There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Domains , SARS-CoV-2 , Saccharomyces cerevisiae/genetics , Saccharomycetales , T-Lymphocytes
20.
Biochim Biophys Acta Gen Subj ; 1865(6): 129893, 2021 06.
Article in English | MEDLINE | ID: mdl-33731300

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has now spread worldwide to infect over 110 million people, with approximately 2.5 million reported deaths. A safe and effective vaccine remains urgently needed. METHOD: We constructed three variants of the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein (residues 331-549) in yeast as follows: (1) a "wild type" RBD (RBD219-WT), (2) a deglycosylated form (RBD219-N1) by deleting the first N-glycosylation site, and (3) a combined deglycosylated and cysteine-mutagenized form (C538A-mutated variant (RBD219-N1C1)). We compared the expression yields, biophysical characteristics, and functionality of the proteins produced from these constructs. RESULTS AND CONCLUSIONS: These three recombinant RBDs showed similar secondary and tertiary structure thermal stability and had the same affinity to their receptor, angiotensin-converting enzyme 2 (ACE-2), suggesting that the selected deletion or mutations did not cause any significant structural changes or alteration of function. However, RBD219-N1C1 had a higher fermentation yield, was easier to purify, was not hyperglycosylated, and had a lower tendency to form oligomers, and thus was selected for further vaccine development and evaluation. GENERAL SIGNIFICANCE: By genetic modification, we were able to design a better-controlled and more stable vaccine candidate, which is an essential and important criterion for any process and manufacturing of biologics or drugs for human use.


Subject(s)
COVID-19 Vaccines/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Cloning, Molecular , Gene Expression , Protein Domains , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...