Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769418

ABSTRACT

Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-ß)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-ß-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (ß-actin) (ACTB) mRNA between the lenses of TGF-ß-overexpressing (TGF-ßtg) mice and TGF-ßtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-ß-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-ß. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-ß-induced EMT in the lens.


Subject(s)
Actins/metabolism , Lens, Crystalline/metabolism , Matrix Metalloproteinase 9/metabolism , Proteome/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Movement/physiology , Disease Models, Animal , Epithelial-Mesenchymal Transition , Lens, Crystalline/pathology , Matrix Metalloproteinase 9/genetics , Mice , Mice, Knockout , Mice, Transgenic , Polymerization , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...