Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 19(10): e202400198, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38558255

ABSTRACT

The ideal and highly anticipated dressing for skin wounds should provide a moist environment, possess antibacterial properties, and ensure sustained drug release. In the present work, a hyaluronic acid-based hydrogel was formed by cross-linking crocetin and CaCO3@polyelectrolyte materials (CaCO3@PEM) microspheres with HA hydrogels via hydrogen bond and amido bonding (CaCO3@PEM@Cro@HA hydrogel, CPC@HA hydrogel). Moreover, the CPC@HA hydrogel had the capability of sustained, controlled release of calcium ions and crocetin via pH-sensitive and accelerated skin wound healing. The experiment results showed that the CPC@HA hydrogel exhibited porous network structures, stable physical properties, and had antibacterial properties and biocompatibility in vitro. In addition, the CPC@HA hydrogel covering on the skin wound could reduce inflammation and promote wound healing. The high expression of angiogenic cytokines (CD31) and epidermal terminal differentiation markers (Loricrin) of wound healing tissue suggested the CPC@HA hydrogel also had the function of promoting the remodeling of regenerated skin. Overall, CPC@HA hydrogel has promising potential for clinical applications in accelerating skin wound repair.


Subject(s)
Calcium , Carotenoids , Hydrogels , Vitamin A , Wound Healing , Wound Healing/drug effects , Vitamin A/analogs & derivatives , Vitamin A/pharmacology , Vitamin A/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Calcium/metabolism , Animals , Carotenoids/chemistry , Carotenoids/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Liberation , Mice , Ions/chemistry , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
2.
Nature ; 612(7939): 232-235, 2022 12.
Article in English | MEDLINE | ID: mdl-36477130

ABSTRACT

It is generally believed that long-duration gamma-ray bursts (GRBs) are associated with massive star core collapse1, whereas short-duration GRBs are associated with mergers of compact star binaries2. However, growing observations3-6 have suggested that oddball GRBs do exist, and several criteria (prompt emission properties, supernova/kilonova associations and host galaxy properties) rather than burst duration only are needed to classify GRBs physically7. A previously reported long-duration burst, GRB 060614 (ref. 3), could be viewed as a short GRB with extended emission if it were observed at a larger distance8 and was associated with a kilonova-like feature9. As a result, it belongs to the type I (compact star merger) GRB category and is probably of binary neutron star (NS) merger origin. Here we report a peculiar long-duration burst, GRB 211211A, whose prompt emission properties in many aspects differ from all known type I GRBs, yet its multiband observations suggest a non-massive-star origin. In particular, substantial excess emission in both optical and near-infrared wavelengths has been discovered (see also ref. 10), which resembles kilonova emission, as observed in some type I GRBs. These observations point towards a new progenitor type of GRBs. A scenario invoking a white dwarf (WD)-NS merger with a post-merger magnetar engine provides a self-consistent interpretation for all the observations, including prompt gamma rays, early X-ray afterglow, as well as the engine-fed11,12 kilonova emission.


Subject(s)
Gamma Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...